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a b s t r a c t

A linear stability analysis is performed for a horizontal layer of a binary liquid of which solely the solute
evaporates into an inert gas, the latter being assumed to be insoluble in the liquid. In particular, a water-
ethanol system in contact with air is considered, with the evaporation of water being neglected (which
can be justified for a certain humidity of the air). External constraints on the system are introduced by
imposing fixed ‘‘ambient” mass fraction and temperature values at a certain effective distance above
the free liquid–gas interface. The temperature is the same as at the bottom of the liquid layer, where,
besides, a fixed mass fraction of the solute is presumed to be maintained. Proceeding from a (quasi-)sta-
tionary reference solution, neutral (monotonic) stability curves are calculated in terms of solutal/thermal
Marangoni/Rayleigh numbers as functions of the wavenumber for different values of the ratio of the gas
and liquid layer thicknesses. The results are also presented in terms of the critical values of the liquid
layer thickness as a function of the thickness of the gas layer. The solutal and thermal Rayleigh and
Marangoni effects are compared to one another. For a water–ethanol mixture of 10 wt.% ethanol, it
appears that the solutal Marangoni effect is by far the most important instability mechanism. Further-
more, its global action can be described within a Pearson-like model, with an appropriately defined Biot
number depending on the wavenumber. On the other hand, it is also shown that, if taken into account,
water evaporation has only minor quantitative consequences upon the results for this predominant, sol-
utal Marangoni mechanism.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In standard studies [1–8] of convective instabilities of horizon-
tal liquid layers, the destabilizing gradient across the layer is di-
rectly controlled from the outside of the system, through
boundary conditions below and above the layer. The instability
due to gravity and density variations is usually called Rayleigh–
Bénard instability, while Marangoni–Bénard instability refers to
the case where the surface tension variations are the driving factor
behind it. When both effects couple, the term ‘‘Rayleigh–Marang-
oni–Bénard instability” is used. If it is the concentration depen-
dence of the density and surface tension that causes the onset of
convection, the corresponding instabilities can be called ‘‘solutal”
Rayleigh–Marangoni–Bénard instabilities. Likewise, ‘‘thermal”
instabilities result from the similar role of the temperature.

When evaporation takes place at the upper surface of the liquid
layer, the situation becomes even more intricate. Indeed, evapora-
tion is an endothermic process, resulting in the cooling of the
liquid surface. In the case of binary mixtures, it is also accompanied
by concentration gradients across the layer. Since the density and

surface tension depend on both the temperature and the concen-
tration, evaporation can thus indirectly destabilize the liquid layer.

Convection due to evaporation is an important phenomenon
that occurs in many applications, such as during the drying of paint
films, coatings, heat exchangers and process engineering installa-
tions. It also occurs in nature when for instance a salty lake dries
out due to the evaporation of water, leaving behind structures on
the soil. Several theoretical works have already been published
on evaporation-driven Bénard instability of a one-component li-
quid layer [9–15], with the liquid evaporating into either an inert
gas [9–13] or into its own vapor [6,14,15]. To our knowledge, the
studies of two-component systems have been rather limited in this
context. One can mention a scaling analysis [16] or experiments
[17]. From the theoretical viewpoint, quite a comprehensive study
has been carried out in the case of a spherical geometry, when the
Marangoni (both thermal and solutal) instability has been consid-
ered for an evaporating binary-liquid droplet [18]. Let us also men-
tion experiments in a Hele-Shaw cell configuration with
evaporating water–alcohol solutions [19,20], where density-fin-
gering (plume-like) patterns have been observed after a certain
time had elapsed since the exposure of the solution to the air,
which is clearly a manifestation of a buoyancy-driven (Rayleigh)
mechanism. Cellular Marangoni patterns have also been observed
[19], which are then suppressed by adding a surfactant, and the
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theoretical part of [19] concerns just the buoyancy-driven
instability.

In the present paper, the Rayleigh–Marangoni–Bénard instabil-
ity induced by evaporation is studied by means of a linear stability
analysis in the case of a binary-liquid layer, when both the solutal
and the thermal factors are involved. The particular model used
here assumes a dilute solution of which only the solute evaporates
(even though the latter limitation is relaxed at a later stage). In this
case, the gas layer consists of an inert gas and the vapor of the
evaporating liquid. The aim of the paper is to study the different
instability mechanisms and to assess the degree of their mutual
importance using a configuration as simple as possible. A concrete
example followed throughout the paper is a 10/90 wt.% ethanol/
water mixture at normal conditions.

The paper is organized as follows. In Section 2, the studied con-
figuration is described, and a mathematical formulation of the
problem is provided assuming that it is only the solute (ethanol)
that evaporates from the binary mixture. The reference state is
considered in Section 3. Section 4 is concerned with the formula-
tion of the linear stability problem. The results of the linear stabil-
ity analysis are presented in Section 5, and the relative importance
of various instability mechanisms is assessed. An approximate ana-
lytical treatment of the reference profile and of the marginal stabil-
ity conditions (by means of a Pearson-like model) is carried out in
Section 6, making use of various simplifications possible within the
full model. In Section 7, the model is generalized to account for sol-
vent (water) volatility, although the subsequent analysis is limited
to the approximate approach framework of Section 6. Finally, the
conclusions are summarized in Section 8.

2. Description of the problem

The system the instability of which is studied in this paper is
presented in Fig. 1. It consists of a binary-liquid layer (thickness
dl, also denoted hd, see the distinction between the two below) in
contact with a gas layer (thickness dg, also denoted (Hd � hd), so
that Hd is the total thickness of the two-layer system). The liquid
layer rests on a horizontal solid surface with a fixed temperature.
The liquid–gas interface is assumed to be undeformable. The liquid
layer is made up of a solute in dilute concentration and a solvent.
The gas layer consists of air (the absorption of which in the liquid is
neglected) and the vapors of the solute and the solvent.

The treatment of the gas layer adopted here follows Haut and
Colinet [10]. The thickness dg in such an approach is just viewed
as a semi-heuristic quantity describing the typical equivalent
(effective) diffusion length in the gas phase as determined by
external air currents which may be naturally present or deliber-
ately created (ventilation) therein: dg is the distance at which the
diffusion is formally of the same magnitude as the convective
transport in a real setup (a transfer distance). In this sense, the
gas phase above this layer is considered as perfectly mixed while
ensuring given ‘‘ambient” values of temperature (the same as at
the bottom of the liquid layer in the case considered here) and

concentration at the effective upper boundary of our gas layer. In
this respect, the approach is actually rather similar to the so-called
‘‘stagnant film” approach, often used in chemical engineering [21].
The shear-induced influence of such currents on the liquid layer is
neglected however, and thus no net horizontal flow in the gas
phase is explicitly included into the model. Besides, the model is
formulated assuming no externally imposed horizontal non-uni-
formities upon the system, implying that the scale of any horizon-
tal non-uniformity that may exist in a real setup (as opposed to the
present idealized configuration) is much greater than the scale of
the phenomena to be studied here (evaporation-induced Bénard
instability). As for the hydrodynamic conditions at the effective
upper boundary of the gas layer, we shall use the ‘‘soft” (‘‘stress-
free”) ones: no tangential stress and a given uniform pressure/nor-
mal stress. We note that, overall, despite its heuristic character, the
proposed approach is more detailed and general than the fre-
quently used one based upon describing the transport processes
in the gas by means of simply a transfer coefficient (Biot number):
the former permits to assess an active role of the gas phase in the
studied phenomena, whereas the latter (being essentially a one-
sided model of the liquid layer) does not.

The solvent is considered to be much less volatile than the sol-
ute. Actually, in the main body of the paper (Sections 2–6), the sol-
vent is formally treated as non-volatile. For a dilute solution of
ethanol (solute) in water (solvent), which is a concrete example
followed throughout the paper, such a treatment is expected to
be approximately valid at some ambient humidity of the air, when
the water vapor is nearly saturated relative to the solution (other-
wise, even though water is indeed much less volatile than ethanol,
its greater amount in the solution may make the effects of its evap-
oration nonetheless noticeable). At the end of the paper, however,
we shall come back to the question of how the results change if
water evaporation is incorporated into the model for an arbitrary
humidity of the air.

Here we shall also assume that it is not only the temperature
that is fixed at the bottom of the liquid layer, but also the concen-
tration. While the latter assumption seems to be rather artificial, it
will permit to study in a simple way (i.e. for a quasi-stationary ref-
erence state) the Bénard instability mechanisms pertinent to an
evaporating binary-liquid layer and to assess their mutual impor-
tance, which is the main goal of the present paper.

Now a few words about the notations dl, dg, hd and Hd as used
here. Due to evaporation, the liquid thickness changes with time
td, which we describe here by introducing the function hd = hd(td).
We can then define a constant quantity dl as the thickness of the
liquid layer at a certain reference, or initial, time td ¼ td

0, i.e.
dl � hd td

0

� �
. This thickness dl will then be chosen as the unit length

for non-dimensionalization. In dimensionless form, the bottom
plate is located at z = 0, and the interface then corresponds to
z = h(t), with h(t0) = 1. Note that the superscript ‘‘d” stands for the
dimensional character of a particular quantity, whenever it is used
elsewhere in dimensionless form. Similarly, in view of the meaning
attributed to the gas layer thickness here, Hd (defined as the total
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Fig. 1. Sketch of the studied system.
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