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a b s t r a c t

The electro-osmotic flow of a viscoelastic fluid between parallel plates is investigated analytically. The
rheology of the fluid is described by the Phan-Thien–Tanner model. This model uses the Gordon–Schow-
alter convected derivative, which leads to a non-zero second normal stress difference in pure shear flow.
A nonlinear Poisson–Boltzmann equation governing the electrical double-layer field and a body force
generated by the applied electrical potential field are included in the analysis. Results are presented
for the velocity and stress component profiles in the microchannel for different parametric values that
characterize this flow. Equations for the critical shear rates and maximum electrical potential that can
be applied to maintain a steady fully developed flow are derived and discussed.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The theoretical analysis of electro-osmotic flows (EOF) of New-
tonian fluids in microchannels has been the subject of several stud-
ies. Burgreen and Nakache [1] studied the effect of the surface
potential on liquid transport through ultrafine capillary slits
assuming the validity of the Debye–Hückel linear approximation
to the electrical potential distribution under an imposed electrical
field. Rice and Whitehead [2] discussed the same problem in a cir-
cular capillary. Dutta and Beskok [3] obtained analytical solutions
for the velocity distribution, mass flow rate, pressure gradient, wall
shear stress, and vorticity in mixed electro-osmotic/pressure dri-
ven flows for a two-dimensional straight channel geometry, for
small, yet finite symmetric electrical double layers (EDL), relevant
for applications where the distance between the two walls of a
microfluidic device is about 1–3 orders of magnitude larger than
the EDL thickness. Arulanandam and Li [4] and Wang et al. [5] pre-
sented a two-dimensional analytical model for the electro-osmotic
flow in a rectangular microchannel. Wang et al. [6] derived a semi-
analytical solution to study the flow behaviour of periodical
electro-osmosis in a rectangular microchannel based on the Pois-
son–Boltzmann and the Navier–Stokes equations. Zade et al. [7]
presented analytical solutions for the heat transfer characteristics
of Newtonian fluids under combined pressure and electro-osmotic
flow forcing in planar microchannels. Analytical solutions for the

two-dimensional, time-dependent as well as time-independent
EOF driven by a uniform electric field with non-uniform zeta po-
tential distributions along the walls of a conduit were presented
by Qian and Bau [8]. Several other articles can be found in the lit-
erature on theoretical studies of EOF with Newtonian fluids in
microchannels such as those of Petsev and Lopez [9], Qian and
Bau [10], among others.

Biofluids are often solutions of long chain molecules which im-
part a non-Newtonian rheological behaviour characterized by var-
iable viscosity, memory effects, normal stress effect, yield stress
and hysteresis of fluid properties. These fluids are encountered in
chips used for chemical and biological analysis or in micro-
rheometers.

The theoretical study of electro-osmotic flows of non-Newto-
nian fluids is recent and has been mostly limited to simple inelastic
fluid models, such as the power-law, due to the inherent analytical
difficulties introduced by more complex constitutive equations.
Examples are the recent works of Das and Chakraborty [11] and
Chakraborty [12], who presented explicit relationships for velocity,
temperature and concentration distributions in electro-osmotic
microchannel flows of non-Newtonian bio-fluids described by the
power-law model. Other purely viscous models were analytically
investigated by Olivares et al. [13], who considered the existence
of a small wall layer depleted of additives and behaving as a New-
tonian fluid (the skimming layer), under the combined action of
pressure and electrical fields, thus restricting the non-Newtonian
behaviour to the electrically neutral region outside the electrical
double layer. Very recently these studies were extended to
viscoelastic fluids by Afonso et al. [14], who presented analytical
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solutions for channel and pipe flows of viscoelastic fluids under the
mixed influence of electro-kinetic and pressure forces, using two
constitutive models: the Phan-Thien–Tanner model (PTT [15]),
with linear kernel for the stress coefficient function and zero sec-
ond normal stress difference [16], and the kinetic theory based Fi-
nitely Extensible Non-linear Elastic model with a Peterlin closure
for the average dumbbell spring force (cf. [17]) denoted as FENE-
P model. Their analysis [14] was restricted to cases with small elec-
tric double-layers, where the distance between the walls of a
microfluidic device is at least one order of magnitude larger than
the EDL, and the fluid is uniformly distributed across the channel.

Afonso et al. [14] also showed that when the viscoelastic flow is
induced by a combination of both electric and pressure potentials,
in addition to the contributions from these two isolated mecha-
nisms there is an extra term in the velocity profile that simulta-
neously combines both forcings, which is absent for the
Newtonian fluids where the superposition principle applies. This
extra term can contribute significantly to the total flow rate, and
appears only when the rheological constitutive equation is non-lin-
ear. Afonso et al. [18] extended their earlier study [14] to the flow
of viscoelastic fluids under asymmetric zeta potential forcing,
whereas Sousa et al. [19] considered the effect of a Newtonian
skimming layer for the PTT fluid.

Flow instabilities can occur for a variety of reasons. For instance,
they are associated with perturbations to non-linear terms of the
governing equations which grow without control. Generally speak-
ing, in electro-osmotic flows in microchannels, flow instabilities
can be promoted by oscillating electric fields, as was justified by
Boy and Storey [20] among others. They can also be promoted by
gradients of conductivity as shown in the experimental study of
Lin et al. [21] who also analyzed the problem theoretically and
numerically.

In addition to inertial non-linearities, which require high Rey-
nolds number flows, non-Newtonian fluids are also prone to flow
instabilities due to non-linearities in their rheological behaviour.

For instance, for viscoelastic fluids constitutive instabilities in
Poiseuille and Couette flows were observed when the constitu-
tive equation exhibits a non-monotonic behaviour for the shear
stress, as reported by Alves et al. [22] for the full PTT model,
and by Español et al. [23] and Georgiou and Vlassopoulos [24]
for the Johnson–Segalman (JS) constitutive equation [25]. To
the best knowledge of the authors this constitutive instability
in microchannels under EOF has not yet been studied. There
are other viscoelastic flow instabilities not associated with
non-monotonic fluid properties, but these are not considered
here.

In this study, we extend the work of Afonso et al. [14] consider-
ing the full Gordon–Schowalter convective derivative in the PTT
model to analyze the steady fully developed flow in the microchan-
nel. We derive expressions for the critical shear rates and Deborah
number beyond which constitutive flow instability occurs. The rest
of the paper is organised as follows. The physical description of the
problem is given in Section 2 while the equations governing the
flow are presented in Section 3. The analytical solutions are derived
in Section 4. Section 5 discusses the results of the study and the
conclusions are presented in Section 6.

2. Physical description of the problem

The geometry under consideration is shown schematically in
Fig. 1, where a microchannel is formed between two parallel plates
separated by a distance (height) 2H. The length of the channel is L
and the width is W, both assumed to be much larger than the
height, i.e., L;W � 2H. The bottom plate is located at y ¼ �H while
the top plate is located at y ¼ H. A potential is applied along the
axis of the channel which provides the necessary driving force
for the flow through electro-osmosis. Due to symmetry of the
geometry and flow conditions with respect to the channel mid-

Nomenclature

Dej Deborah number, kjush

e elementary charge [1.6022 � 10�19 C]
Ex x-component of imposed electric gradient [V m�1]
f ðskkÞ PTT stress coefficient function
H half-height of the microchannel [m]
kB Boltzmann constant [1.3807 � 10�23 J K�1]
L microchannel length [m]
n0 ionic number concentration [m�3]
t time [s]
T absolute temperature [K]
u x-component of velocity [m s�1]
ush Helmholtz–Smoluchowski velocity [m s�1]
x axial direction [m]
y transverse co-ordinate [m]
W microchannel width [m]
z valence of ions

Tensors and vectors
D rate of deformation tensor [s�1]
E external applied electric field [V m�1]
u velocity vector [m s�1]
s polymeric extra-stress tensor [Pa]

Greek
e Extensibility parameter of PTT model
2 dielectric constant of the fluid [C V�1 m�1]

/ electric potential in the streamwise direction (imposed)
[V]

_c velocity gradient [s�1]
g polymer viscosity coefficient [Pa s]
j2 Debye Hückel parameter [m�2]
k relaxation time [s]
kD Debye layer thickness [m]
l viscometric viscosity [Pa s]
qe electric charge density [C m�3]
sxx; syy normal stresses [Pa]
sxy shear stress [Pa]
skk trace of the extra stress tensor [Pa]
n PTT model parameter that accounts for the slip between

molecular network and the continuum medium
w potential field in the transverse direction (induced) [V]
w0 wall zeta potential [V]

Subscripts
c refers to critical value
j refers to Debye–Hückel parameter
sh refers to Helmholtz–Smoluchowski
s refers to solvent

Superscript
} Gordon–Schowalter convected derivative
- dimensionless quantity
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