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a b s t r a c t

Adhesion mechanism of ivy has been of major research interest for its potential applications in high-
strength materials. Recent experimental studies demonstrated that nanoparticles secreted from ivy ten-
drils play an important role in adhesion. In this work, we investigate how various factors such as van der
Waals interaction, capillarity, and molecular cross-linking influence the adhesion mechanics of ivy nano-
particles. This paper provides guidelines in choosing different adhesive contact models. Understanding
the mechanics of ivy adhesion could potentially inspire the design and fabrication of novel nano-bio-
materials.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Ivy is a fascinating climber. Using its tendrils, ivy can climb on
walls, trees, and many other surfaces. Though very small in size,
the tendrils can provide surprisingly large forces. For example,
Darwin [1] showed that an ivy disc of weight 0.5 mg can produce
about 2 lb pull-off force, which is over 1.8 million larger than the
weight of adhering disc. Thus, understanding ivy adhesion
mechanics may have important significance in material science.
Using atomic force microscopy (AFM), Zhang et al. [2,3] observed
ivy secretes nanoparticles through adhering discs of the ivy root-
lets that allow the plant to affix to a surface (see Fig. 1). This obser-
vation suggests that the nanoparticles play a direct and important
role for ivy surface climbing although the mechanics interpretation
for the adhesion is still not completely known. This paper attempts
to explore the adhesion mechanics of ivy nanoparticles using con-
tact and fracture mechanics models. In particular, the computa-
tional work here is greatly inspired by the seminal work of Gao
et al. in their research about the adhesion structures of gecko [4–8].

From mechanics point of view, adhesion is expressed in terms
of the work of adhesion [9], the physical origins of which may in-
clude: van der Waals interaction, electrostatic forces, capillarity
and chemical bond. The adhesion also undergoes cross-linking
with a corresponding increase in adhesion strength, and roughness
with a decrease in strength. Continuum mechanics models of the
adhesion between spherical surfaces which deform within the
elastic limit are well developed. The inter-atomic forces at inter-
faces were first explained by London [10], and soon after they were

applied by Bradley [11], Derjaguin [12] and Hamaker [13] to the
problem of the forces between small particles. In an attempt to
characterize the adhesive contact between elastic spheres, three
major theories have been developed. These theories include: John-
son–Kendall–Roberts (JKR) [14], Derjaguin–Muller–Toporov (DMT)
[15], and Maugis-Dugdale (M-D) [16]. The JKR theory is applicable
to large, soft, compliant materials with high surface energy. The
adhesion forces outside the area of contact are neglected and elas-
tic stresses at the edge of the contact are infinite. Contrary to the
JKR theory, the DMT theory applies to smaller, stiffer, less compli-
ant materials with a low surface energy. The interaction forces out-
side the contact area are taken into account, but these interaction
forces are assumed not to deform the profile. The M-D theory is for
materials with property between JKR and DMT regimes, and can be
governed by a non-dimensional elasticity parameter defined as
follows
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� ��1 is the combined effective
elastic modulus of the two contacting objects, Ei and mi are Young’s
moduli and Poisson’s ratios of the two materials, respectively. R is
the equivalent radius of the two spheres given by 1=R ¼ 1=R1þ
1=R2, Ri are the radii of the two contacting spheres, w is work of
adhesion, r0 the maximum attractive stress. This parameter may
be interpreted as the ratio of the elastic deformation of the surfaces
at the point of separation (pull off) to the effective range of action of
the adhesive forces. The JKR theory and DMT theory are each appro-
priate to opposite extremes of the parameter k. When k increases
from zero to infinity there is a continuous transition from the
DMT approximation to the JKR approximation [16,17].
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2. Problem formulation

2.1. Geometry of a nanoparticle

Based on the observation of AFM topography images (see Fig. 1),
we postulate that the ivy nanoparticles may not be perfect nano-
spheres, and assume that there are some irregular planes on the
surface. To understand the nano scale adhesion mechanism, we
consider a rigid/elastic spherical cap with a flat punch in contact
with a smooth rigid substrate, as shown in Fig. 2. The radius of
the actual contact area is a ¼ R sin a; 0� 6 a 6 90�. Three models,
generalized from DMT, JKR, and M-D theory to specified geometry,
are presented to interpret the pull-off force.

2.2. DMT type model

In general, the surface force r, defined as the force per unit area
between two half-spaces separated by a distance z, can be obtained
from the Lennard–Jones potential and is given by

rðzÞ ¼ 8w
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where z0 is the equilibrium separation. To avoid self-consistent
numerical calculations based on the Lennard–Jones interaction
model, it is easier to representing the surface force by the Dugdale
approximation [18], in which the attractive stress is assumed to be
a constant r0 with a critical separation h0 ¼ w=r0 (called the cohe-
sive zone) and zero beyond this distance, as shown in Fig. 3.

Using the Dugdale type interaction law, we consider a simple
DMT type model in which the deformation of contact surfaces is
neglected (rigid assumption) and assume a constant attractive
stress r0 inside the contact area. The maximum adhesive force,
i.e., the pull-off force to separate two rigid objects, can be calcu-
lated as follows:

Fp ¼ pa2r0 þ
Z r0

a
2pr0rdr ¼

pa2r0 þ
R h0

0 2pr0ðR cos a� hÞdh;

if h0 < R cos a
pa2r0 þ

R R cos a
0 2pr0ðR cos a� hÞdh;

if h0 P R cos a

8>>>><
>>>>:

¼ F0½1� cos2 að1� fÞ2�; f < 1
F0; f P 1
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where r0 is the radius of the cohesive zone, and

f ¼ h0

R cos a
; F0 ¼ pR2r0 ð4Þ

There is a saturation of adhesion strength below a critical size
R0 ¼ h0= cos að0� 6 a < 90�Þ or a critical angle a0 ¼ arccosðh0=RÞ.
The contact achieves its theoretical strength F0 when R < R0 or
a > a0. The perfect shape is simply a hemisphere with a ¼ 90�, un-
der which condition the nanoparticle adhering to a flat rigid sub-
strate would achieve the theoretical adhesion strength F0

regardless of the particle size R.

2.3. JKR type model

Since biological contacts usually consist of compliant materials
[19], elastic deformation should be considered in the analysis of
adhesive contact.

Gao et al. proposed a JKR type model, which is consistent with
linear elastic fracture mechanics (LEFM) approximation, to deter-
mine the pull-off forces of a cylindrical spatula [5]. Here we model
the contact as an elastic spherical cap in contact with a rigid sub-
strate, resembling a soft ivy nanoparticle in contact with a hard
material. We assume that adhesion forces outside the area of con-
tact are negligible and elastic stresses at the edge of the contact are
infinite. The adhesive strength of such an adhesive joint can be cal-
culated by treating the contact problem as a circumferential crack
(see Fig. 4), in which case the stress field near the edge of the

α

Fig. 2. Schematic diagram of the contact between a nanoparticle and a rigid
substrate.
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Fig. 3. Force-separation laws: Lennard–Jones potential; the Dugdale approxima-
tion, the work of adhesion w ¼ r0h0, the cohesive zone is thus h0 ¼ 0:97z0.

Fig. 1. An AFM image of nanoparticles secreted from the adhering discs of ivy on a
silicon wafer surface.
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