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a b s t r a c t

Advective flow of a permeable sphere in an electrical field is comprehensively studied. The sphere has a
uniform permeability and is subject to an incoming Newtonian flow. The electrical field generates an
electro-osmotic flow inside the sphere, which markedly affects sphere flow dynamics. A numerical model
elucidates the effects of flow dynamic parameters on the drag coefficient and ratio of drag forces to a per-
meable and solid sphere. The model solves the Navier–Stokes equations both inside and outside the por-
ous sphere. The unique flow field and pressure patterns of the permeable sphere flow are characterized in
detail, and utilized to interpret the distinguishing flow behaviors of spheres induced by electro-osmotic
flow. Drag force decreases and or reverses in direction when the intensity of the electro-osmotic flow in
the sphere increases. When the electro-osmotic flow is counter to the incoming flow, drag force increases
significantly, and vortices form near the sphere. As the sphere becomes highly permeable, the influence of
the electro-osmotic flow and incoming flow velocity are reduced markedly.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Permeable sphere flow is of considerable importance to many
applications, including sedimentation, electro-osmotic dewatering
and aggregation of wastewater sludge. The motion of a permeable
sphere in an infinite Newtonian fluid depends on the hydrody-
namic force on the sphere [1,2]. Since fluid can penetrate a perme-
able sphere, the corresponding flow resistance for the permeable
sphere is lower than that for a solid sphere. Therefore, permeability
determines the hydrodynamic characteristics of a permeable
sphere.

Naturally formed porous materials, such as wastewater sludge
flocs, have complex internal structures [3–5] and, thus, have intra-
floc flows [6–12]. Large pores, such as those defined by an image-
based method [13], have low flow resistance and, therefore,
contribute significantly to the permeability of a porous material,
such as a porous fouling layer on a membrane [14]. However, some
pores, including large pores, may not connect to the outside of the
sphere and thereby cannot contribute to overall permeability. Sim-
plified models assume uniform permeability [15–18] or a radially
varying permeability of a sphere [19–23].

How a spherical flow is influenced by an electrical field is of a
great concern for many applications, such as the electrophoresis
and electro-osmosis of sludge. A fluid flow driven by an electrical

field in a porous medium differs from that driven by a pressure
gradient [24]. The electrical permittivity of a porous material likely
differs from that of surrounding fluids, thereby distorting the elec-
trical lines of force on internal flow fields [25]. The presence of a
pressure gradient can also interact with the electrical field [26].
The fluid flow field around and inside a porous sphere under an
electrical field has not been well characterized.

This work numerically elucidates the flow fields and drag forces
for a porous sphere moving at different Reynolds numbers through
an unbound Newtonian fluid under an external electrical field. The
sphere has uniform permeability, and the effects of the external
electrical field induce electro-osmotic flow.

2. Materials and methods

2.1. Governing equations

The problem of interest is a permeable sphere moving at a con-
stant velocity, u0, in a quiescent fluid. The sphere is located at the
center of a large cylinder filled with a Newtonian fluid moving in
the direction along the axis of the cylinder, which comprises the
computational domain. A uniform electrical field is applied
along/against the moving direction of the sphere and causes an
electro-osmotic flow inside a sphere with a porous structure. This
problem is hydrodynamically equivalent to that of a fixed sphere
experiencing an incoming flow at a velocity of u0. The computa-
tional domain is situated in an axisymmetrical X–R coordinate
(Fig. 1).
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Preliminary calculations indicate that when cylinder diameter
is 100 times that of the sphere, the wall confinement effect on
sphere flow can be neglected and the sphere behaves as if it were
moving in an unbound fluid.

The non-dimensional equations for a sphere moving steadily in
an unbound incompressible Newtonian fluid are as follows:

(a) Continuity equation:

~r � U ¼ 0 ð1Þ

(b) Momentum equations:
Inside the sphere:

Re ~r � ðUUÞ ¼ � ~rP þ ~r � T� 4b2Uþ 4b2WeE ð2Þ

Outside the sphere:

Re ~r � ðUUÞ ¼ � ~rP þ ~r � T ð3Þ

where U ¼ u
u0

, u ¼ uxex þ urer, ~r ¼ ex
@
@X þ

eh
R

@
@hþ er

@
@R, X ¼ x

d, R ¼ r
d,

T ¼ ½ ~rUþ ð ~rUÞT �, P ¼ pd
lu0

, b ¼ d
2
ffiffiffiffi
Kp
p , Re ¼ qu0d

l , and W ¼ uE
u0
¼

KEE
u0l

.where u is the velocity vector; ux and ur are components of u

in the X- and R-directions, respectively; ex is the unit vector in
the axial direction eh in the angular direction and er in the radial
direction; d is the sphere diameter; x, h, and r the dimensional coor-
dinates in the axial, angular, and radial directions, respectively; p is
pressure, q is density, and l is viscosity of a fluid; Kp is the perme-
ability of a pure hydrodynamic flow; and KE is the electro-osmotic
permeability defined by [27] as

KE ¼
l
E

uE ð4Þ

where E is the electrical field intensity along the flow direction, and
uE is the electro-osmotic flow superficial velocity in a porous
medium.

Non-dimensional parameter b is a ratio between sphere radius
and a characteristic length based on the permeability of purely
hydrodynamic flow. Since the radius of a sphere alters the outflow
and permeability introduces the internal flow, b determines the
outside and inside flows. Non-dimensional parameter W measures
the strength of an electro-osmotic flow relative to the hydrody-
namic flow inside the sphere; thus, in this work, is called the veloc-
ity ratio. At W = 0, sphere flow is not subject to an electrical field
and becomes a purely hydrodynamic flow.

2.2. Boundary conditions

At the inlet of the computational domain, we assume a uniform
flow boundary condition:

U ¼ ex ð5Þ

Since the distance to the sphere exceeds 50 times its diameter,
we assume the outlet boundary condition is

@U
@X
¼ 0 ð6Þ

At the side boundary (50 times the sphere diameter away from
the sphere), fluid flow is undisturbed by the presence of the
sphere; that is,

U ¼ ex ð7Þ

On the axisymmetrical axis:

@U
@R
¼ 0 ð8Þ

On the sphere surface:

ð�PIþ TÞjþ ¼ ð�PIþ TÞj� ð9aÞ

and

Ujþ ¼ Uj� ð9bÞ

where I is the identity matrix, and + and � represent the inside and
outside of the sphere surface, respectively. Eqs. (9a) and (9b) derive
the balance of force and mass flux on the surface, respectively.

2.3. Solution and validation

The computational domain is discretized into finite volumes. All
variables are stored in the center of the mesh cells. Convective and
diffusive fluxes in the governing equations are discretized by a sec-
ond-order upwind scheme and a central-differencing scheme,
respectively. Pressure–velocity coupling is implemented by the
SIMPLE algorithm. A uniform flow condition, as that in Eq. (5), is uti-
lized to initialize the solution. Iterations at each time step are termi-
nated when dimensionless residuals for all equations are <10�6. The
computations are performed using the commercial software FLU-
ENT 6.1 [28]. Grid dependence is assessed by inspecting the cases
under various grid densities. Finally, the grid set withDX = DR = 0.01
in the sphere and its vicinity, and DX = DR = 0.1 in the faraway re-
gion shows a <1% difference in the drag force of that with
DX = DR = 0.005 (near the sphere) and DX = DR = 0.05 (far from
the sphere), indicating that a weak dependence on grid size has been
achieved. The former grid set is therefore chosen for further analysis.

Model validation is first performed for solid sphere flows. The
drag force calculated by the model has a deviation <1% from the
prediction by Stokes law for creeping flows with small Re values
(Re < 0.1). Further comparison between the model and a theoretical

Fig. 1. Computational domain in an axisymmetric coordinate.
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