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The pendant drop method is one of the most widely used techniques to measure the surface tension
between gas–liquid and liquid–liquid interfaces. The method consists of fitting the Young–Laplace
equation to the digitized shape of a drop suspended from the end of a capillary tube. The first use of
digital computers to solve this problem utilized nonlinear least squares fitting and since then numerous
subroutines and algorithms have been reported for improving efficiency and accuracy. However, current
algorithms which rely on gradient based methods have difficulty converging for almost spherical drop
shapes (i.e. low Bond numbers). We present a non-gradient based algorithm based on the Nelder–Mead
simplex method to solve the least squares problem. The main advantage of using a non-gradient based
fitting routine is that it is robust against poor initial guesses and works for almost spherical bubble
shapes. We have tested the algorithm against theoretical and experimental drop shapes to demonstrate
both the efficiency and the accuracy of the fitting routine for a wide range of Bond numbers. Our study
shows that this algorithm allows for surface tension measurements corresponding to Bond numbers
previously shown to be ill suited for pendant drop measurements.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

When a fluid is suspended from a capillary and surrounded by
another fluid such that gravity acts along the axis of the capillary
to distend the nominally spherical interface, the shape of the in-
terface depends on the surface tension, γ , the characteristic size
of the bubble or drop, R0, and the density difference between the
two fluids, �ρ . The Bond number, given by

β = �ρg R2
0/γ , (1)

is a dimensionless group describing the relative magnitude of
forces due to gravity and surface tension. If the density differ-
ence between the fluids is known and the size can be measured,
then the surface tension can be determined from a measurement
of the interface shape. This method of measuring surface tension,
first realized by Andreas and coworkers [1], has come to be known
as the pendant drop method. The method was suggested earlier
by Worthington [2,3] and Ferguson [4], but measurements of drop
coordinates proved difficult at that time. Andreas et al. overcame
these issues by reformulating the Young–Laplace equation in a new
coordinate system.
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Using the formulation of Andreas et al., the Young–Laplace
equation is integrated to obtain a theoretical drop shape, which
is then compared with an experimental drop shape to determine
the surface tension between the two fluids. Before the availabil-
ity of digital computers, drop shapes were analyzed by examining
the ratio of radii of the drop at different axial positions, whose
values were tabulated along with corresponding surface tension
values [5]. This analysis, known as the selected plane method, is
still carried out today when rough estimates (i.e. within 1 mN/m)
of surface tension are of interest. However, when accuracy is re-
quired it is necessary to solve a nonlinear least-squares problem to
fit a calculated drop shape to a measured drop shape. In addition,
the selected plane method only works for drops that fall within a
selected range of Bond numbers.

Although the particulars of the nonlinear least-squares fitting
algorithms found in the literature might differ, the general proce-
dure for each method remains the same. For instance, an image
is first recorded by a CCD camera and digitized. An edge detec-
tion method is used to extract the shape of the drop interface. The
coordinates of the interface are then used to calculate the error be-
tween computed theoretical shapes and the measured shape. The
error is computed via an objective function, defined as the shortest
distance between an experimental point and a point on the cal-
culated interface. The procedure is repeated until the theoretical
shape corresponding to the minimum error is found. The param-

0021-9797/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2009.01.074

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcis
mailto:sanna@andrew.cmu.edu
http://dx.doi.org/10.1016/j.jcis.2009.01.074


558 N.J. Alvarez et al. / Journal of Colloid and Interface Science 333 (2009) 557–562

eters that result from the fitting analysis are then assumed to be
the parameters governing the shape of the experimental drop.

The most extensively utilized fitting routine for pendant and
sessile drop studies is known as Axisymmetric Drop Shape Analy-
sis (ADSA) [6]. Since the initial publication of this approach, there
have been many improvements and adaptations for different ap-
plications [7,8]. The first version used a Newton–Raphson routine
with incremental loading, a method that systematically increments
the parameter space after each Newton–Raphson iteration. How-
ever, this algorithm was found to be computationally expensive
and convergence is not guaranteed, especially when starting from
a poor guess [7]. To improve convergence, del Rio et al. combined
the Newton–Raphson method with the Levenberg–Marquardt algo-
rithm which helped improve the likelihood of convergence. How-
ever, major limitations to the ADSA algorithm remain, as sum-
marized recently by Hoorfar and Neumann [8]. For example, the
authors found that ADSA-based algorithms are ill-suited for cer-
tain drop shapes that are close to spherical. A spherical drop of
water analyzed using the ADSA algorithm yields a surface ten-
sion value near 79.32 mN/m, compared with the expected value of
72.28 mN/m [8]. The discrepancy between these two values is rel-
atively large compared with typical pendant drop measurements,
which are normally within 0.5 mN/m of the expected value at
optimum conditions. To mitigate these discrepancies, a shape pa-
rameter, which is a measure of how close the shape is to spherical,
is used to determine whether ADSA can be appropriately applied
to a given drop. Generally speaking, the minimum Bond number at
which the ADSA algorithm can be successfully applied is approxi-
mately β ≈ 0.2.

Although improvements on these methods continue to be de-
veloped, there are fundamental limitations to gradient-based tech-
niques such as ADSA. For instance, the convergence of gradient
optimization methods assumes a continuous objective function.
Although continuity of the error equation may be assumed for
theoretical drops with no distortion in the pixel positions, the as-
sumption may not be valid for experimental drop shapes where
pixel positions may be shifted due to threshold effects, imperfect
edge detection routines, and random noise [9].

The inability of pendant drop measurements to be conducted
below β ≈ 0.2 places a significant restriction on interfacial tension
measurements for liquid–liquid pairs. For example, in the case of
silicone oil and water, the density difference, �ρ ≈ 10−2 g/cm3.
To achieve a Bond number greater than β ≈ 0.2 would require
a drop size on the order of centimeters. While this might not
represent a significant impedance for static measurements, the
timescale to reach equilibrium in dynamic studies of surfactant
adsorption scales with drop radius, and a centimeter-scale drop
will increase the timescale by an order of magnitude compared
with typical pendant drop measurements [10]. In addition, in ex-
periments where microgravity is simulated using density matched
fluids �ρ ≈ 10−3 g/cm3, which further limits both static and dy-
namic studies as the drop would have to be extremely large and
timescales to reach equilibrium very long. Therefore, an algorithm
that can avoid the restriction on Bond number would facilitate
studies of liquid–liquid interfaces that are currently too difficult
to measure.

The present paper describes a new, non gradient-based algo-
rithm that utilizes the Nelder–Mead simplex method for the deter-
mination of surface tension from the measured shape of a pendant
drop or bubble. Numerous test cases are constructed to validate
the efficiency and robustness of the algorithm, even when only
poor initial guesses are available. In addition, one of the main
concerns of using a non-gradient based optimization routine is
that convergence could take an extended period of time. There-
fore, we have documented the computational time of the algorithm
to ensure its efficiency in dynamic surface tension studies where

Fig. 1. The coordinate system for a pendant drop, where x is the horizontal coordi-
nate, z is the vertical coordinate, φ is the angle of rotation from the apex (X0, Z0),
and s is the arc length. R1 is the principal radius of curvature in the plane of the
paper and R2 is the principal radius of curvature in a plane perpendicular to the
paper and the axis of symmetry, such that R2 = x/ sin φ.

many frames (i.e. 100–1000) need to be analyzed. Furthermore, we
demonstrate the ability of the new algorithm to fit nearly spheri-
cal drop shapes, both theoretically and experimentally, overcoming
a major limitation of existing algorithms.

2. Relationship between surface tension and the shape of a
pendant drop

The pressure jump �P across a fluid interface at any point is
a function of the two principal radii of curvature, given by the
Young–Laplace equation, �P = γ (1/R1 + 1/R2), where γ is the
interfacial tension, and R1 and R2 are the two principle radii of
curvature. If gravity is the only additional force acting on the drop,
then the pressure jump is given by �P = �P0 + �ρgz, where �ρ
is the density difference between the two fluids. Using geometrical
arguments and a change of coordinate system, illustrated schemat-
ically in Fig. 1, the Young–Laplace equation becomes a set of three
ordinary differential equations [1],

dx

ds
= cosφ,

dz

ds
= sin φ,

dφ

ds
= 2 − β · z − sin φ

x
, (2)

where x is the horizontal coordinate, z the vertical coordinate, φ

is the angle of rotation measured from the apex, and s is the arc
length. Equations (2) are subject to the initial conditions

x(s = 0) = z(s = 0) = φ(s = 0) = 0, (3)

where β is the Bond number defined earlier, Eq. (1), in which R0
is taken to be the radius of curvature at the apex.

Numerous techniques, summarized by del Rio and Neumann
[7], have been employed to solve the system of differential equa-
tions given by Eqs. (2) and (3). In the present paper, we have
chosen to use a version of the well-known Runge–Kutta approach,
specifically the fourth and fifth order Runge–Kutta–Dormand–
Prince pair, which is an efficient solver allowing for intermediate
step sizes to be calculated with almost no increase in computa-
tional time [11]. This scheme increases the accuracy of the fitting
routine without increasing computational time for the numerous
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