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Electrokinetic flow-induced currents inside slit-shaped silica nanochannels are investigated. The unusual
features observed experimentally in silica nanochannels are described successfully using a new
theoretical framework. First, a simple and reliable physicochemical boundary condition at the interface
between the channel surface and the solution is suggested. It accounts for the surface conduction effect
through the Stern layer and the dependence of the surface charge on the salt concentration and pH,
which were commonly neglected in previous studies. Second, the proposed boundary condition is then
incorporated into the traditional Poisson–Boltzmann and Nernst–Planck models to complete the self-
consistent model. Model predictions are validated by comparison with experimental data. It is found that
the direct numerical predictions of the concentration polarization and the induced potential or pressure
field are possible, and these allow us to describe the dependence of currents on the solution properties
in the nanofluidic channel more accurately than the models proposed in previous studies.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Ever since the discovery of the electrokinetic effect, many the-
oretical and experimental attempts have been made to explain
the physical mechanism [1] and to widen its engineering appli-
cations. These include capillary electrophoresis [2], drug delivery
and screening [3], electric power generation [4], liquid pumps [5],
and electronics cooling [6]. These applications are realized mostly
using channels with various cross-sectional shapes whose dimen-
sion is on the order of micrometers or less. Basic understanding
and the analysis of electrokinetic fluid flow inside the channel are
of great importance in designing electrokinetic devices.

Electrokinetic flow in a micro-sized channel can be readily ana-
lyzed using the Poisson–Boltzmann and Stokes equations (hereafter
we call this approach the PB model). This approach was first in-
troduced by Burgreen and Nakache [7,8] and Osterle’s group [9,
10]. They independently derived analytic expressions for electroki-
netic parameters such as streaming current, streaming potential,
and energy conversion efficiency. In their model, the ion distribu-
tion in the electric double layer (EDL) is obtained by solving the
Boltzmann equation. The Boltzmann equation is based on the as-
sumptions of constant electrochemical potential everywhere and
nonoverlapping EDLs [1]. Thus it is applicable for the ionic con-
centration in the channel whose critical dimension is much greater
than the thickness of EDLs.
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In the case of nanochannels whose characteristic dimension is
comparable to the EDL thickness, the PB model fails to describe the
interesting features observed experimentally in recent studies [11,
12]. For example, the concentration polarization effect caused by
selective ion transport through the charged nanochannel becomes
significant as the degree of EDL overlap becomes large. This phe-
nomenon cannot be explained by using the PB model because it
is limited to the nonoverlapping EDLs. Nonetheless, many investi-
gators [5,13–19] used the PB model in modeling the electrokinetic
flow in nanochannels, maybe due to its simplicity and easy of use.

The overlapping behavior of EDLs can be precisely described by
using the Nernst–Planck model (hereafter we call this approach
the NP model). In this model, the characteristics for the elec-
trokinetic flow are obtained by numerically solving the Poisson
equation, the Nernst–Planck equation, and the Navier–Stokes equa-
tion, simultaneously [20–24]. Although the computational cost for
the numerical calculation of full governing equations is extremely
high compared to that for the simple PB model, the advantages of
the NP model can overshadow this weakness. For example, the NP
model can describe the nonlinear electrokinetic behaviors such as
the concentration polarization effect [11,12], the limiting-current
behavior [25], and the transient characteristics [26,27], which can-
not be generally predicted by the PB model. Nevertheless, research
on a direct comparison between the NP model and the PB model
or between the NP model and the experimental data has been in-
sufficiently carried out so far [28].

The zeta potential or surface charge density is an intrinsic
property of a surface and it is used as an electrostatic potential
boundary condition for the PB and NP models. As noted by Kirby
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and Hasselbrink [29], zeta potential varies significantly depend-
ing on the solution pH and concentration. This is also true for
the surface charge density. Nevertheless, many studies are based
on the constant zeta potential [20,24] or constant surface charge
density [13,21–23,25,26] at surfaces when modeling electrokinetic
flow under the conditions of varying concentration. For example,
the model of Stein et al. [13] was made to fit to experimental
data and showed good model predictions. However, their bound-
ary condition is physically incorrect because they neglected the
dependence of the surface charge density on concentration. As al-
ternatives, the basic Stern layer capacitance model [4,14,30] and
the site-dissociation–site-binding model [31–37] were introduced.
In these models, the surface charge density varies, depending on
the solution pH and concentration. A common feature of these
models is that the physicochemical parameters such as equilibrium
constants and Stern layer capacitance are unknowns, although they
are usually determined to be within ranges of reported values [14],
and obtained by fitting the model to the experimental data case by
case, which is a very tedious process. Therefore, it will be mean-
ingful to propose a boundary condition for the electric potential
which is both physically reasonable and simple to use.

The purpose of the present study is to propose a better model-
ing method that accurately describes the electrokinetic flow and
ion transport in nanofluidic channels. The proposed model will
be validated by comparing the results based on the model with
recently measured streaming and electrical currents in fused sil-
ica nanochannels [4,14]. The main objectives of this study are as
follows: (a) to propose a wall boundary condition for the elec-
tric potential and surface charge density that can be applied to
a silica surface easily and self-consistently and (b) to investigate
the fundamental transport characteristics and mechanism of the
electrokinetic flow inside the nanochannel using the PB and NP
models.

2. Theoretical formulation and numerical method

2.1. Governing equations

The governing equations for the velocity field and electric po-
tential inside the channel are the Navier–Stokes and Poisson’s
equations, respectively,

ρ

(
∂ �u
∂t

+ �u · ∇�u
)

= −∇p + μ∇2�u + ρe �E, (1)

∇2φ = − 1

ε0εr

∑
i

ni zie, (2)

where ρ is the fluid density, �u the fluid velocity vector, p the
local pressure, μ the fluid dynamic viscosity, ρe = ∑

i ni zie the
volume charge density, �E the externally applied electric field, φ

the local electric potential, ε0 the permittivity of the vacuum, εr

the relative permittivity, ni the ion concentration (number of ions
per unit volume), zi the valence of ion i, and e the elementary
charge, respectively. Here εr is assumed to be uniform through-
out the channel. The second term on the left-hand side of Eq. (1)
is negligible for the general electrokinetic flow applications with-
out loss of accuracy because the Reynolds number is very small on
the order of 10−2 or less. Thus one can utilize the following Stokes
equation for steady and laminar flow conditions:

−∇p + μ∇2�u + ρe �E = 0. (3)

A current exists in the channel due to the motion of ions, which
is induced by the applied electric field, concentration gradient, or
pressure gradient. For the dilute electrolyte, the current density is
the summation of contributions from diffusion, electromigration,

Fig. 1. Schematic of the nanochannel connected with reservoir in both sides of di-
rections and boundary conditions for the reservoir and the wall of the nanochannel.

and advection of ions. The current density from ion i can be writ-
ten as

�ii = −Di zie∇ni − bi zieni∇φ + zieni �u, (4)

where �i is the current density, D the diffusivity, and b the ion mo-
bility, respectively. Equation (4) is called the Nernst–Planck equa-
tion. Due to ion conservation at steady state, the gradient of Eq. (4)
should be equal to zero: that is,

∇ · (Di∇ni + bini∇φ) = �u · ∇ni . (5)

Equations (2), (3), and (5) compose a set of differential equations
with unknowns ni , �u, and φ.

The Boltzmann equation is valid for the assumptions of con-
stant electrochemical potential, no convective transport of ions,
and nonoverlapping EDLs in the channel flow. With these assump-
tions, Eq. (5) can be simplified as

ni = n0 exp

(
− zieφ

kT

)
, (6)

where n0 represents the concentration of bulk solution, k the
Boltzmann constant, and T the absolute temperature, respectively.
Introducing Eq. (6) into Eq. (2), one can derive the following the
Poisson–Boltzmann equation:

∇2φ = − 1

ε0εr

∑
i

zien0 exp

(
− zieφ

kT

)
. (7)

We can precisely calculate the concentration and local electric po-
tential distributions using Eqs. (6) and (7), respectively.

The PB and NP models are different from each other; the former
uses Eq. (6) to obtain information about the ionic concentration,
but the latter uses Eq. (5). The PB model is simple but results in
approximate solutions due to its inherent assumptions. That is, it
can give poor predictions for the electrokinetic flow in a nanochan-
nel where the EDLs from each wall begin to overlap. On the other
hand, the NP model yields exact solutions, but requires full numer-
ical simulation whose computational cost is much higher than that
of the PB model.

2.2. Electrokinetic flow and currents inside the nanochannel

We consider the electrokinetic flow in the slit-shaped chan-
nel of submicrometer height. Fig. 1 is the schematic view of the
nanochannel. In this study, we ignore the z directional variations of
the velocity, ion concentration, and potential for the convenience
of calculation. Thus, we consider the two-dimensional problem.

2.2.1. The PB model
We can derive an analytic expression for the velocity distri-

bution in the nanochannel using the PB model [5]. Substituting
Eq. (2) into Eq. (3) and integrating twice with respect to y, the
velocity profile is given by

u = h2

2μ

�p

L
(y∗2 − 1) + ε0εrζ

μ

�ψ

L

(
φ∗

ζ ∗ − 1

)
, (8)
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