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a b s t r a c t

In this article the different dimensionless scaling methods for capillary rise of liquids in a tube or a porous
medium are discussed. A systematic approach is taken, and the possible options are derived by means of
the Buckingham p theorem. It is found that three forces (inertial, viscous and hydrostatic forces) can be
used to obtain three different scaling sets, each consisting of two dimensionless variables and one dimen-
sionless basic parameter. From a general point of view the three scaling options are all equivalent and
valid for describing the problem of capillary rise. Contrary to this we find that for certain cases (depend-
ing on the time scale and the dominant forces) one of the options can be favorable. Individually the dif-
ferent scalings have been discussed and used in literature previously, however, we intend to discuss the
three different sets systematically in a single paper and try to evaluate when which scaling is most useful.
Furthermore we investigate previous analytic solutions and determine their ranges of applicability when
compared to numerical solutions of the differential equation of motion (momentum balance).

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

There are numerous applications of capillary transport phe-
nomena ranging from daily life (writing with ink) to complex engi-
neering applications (fluid management in space) and pure
academic interest (validation of CFD tools). Thus there are many
publications dealing with this problem, its mathematical descrip-
tion and its physical explanation [1–7]. To obtain a better under-
standing of a problem its dimensionless consideration is always
of interest. Here the Buckingham p theorem [8] can be used to ob-
tain appropriate dimensionless scalings. In literature there are sev-
eral papers applying dimensionless numbers to the problem of
capillary rise. Ichikawa and Satoda [9] focus on experiments with
horizontal capillaries, Dreyer et al. [10] and Stange et al. [11,12]
on capillaries in a microgravity environment. There also exist stud-
ies involving gravity, thus leading to different scaling approaches
e.g. by Quéré et al. [13,14], Marmur and Cohen [15], Zhmud et al.
[16], Lee and Lee [17] or Fries and Dreyer [18,19]. McKinley [20]
investigates dimensionless groups for free surface flows with a fo-
cus on complex fluids. In this paper we now intend to follow a sys-
tematic approach to dimensionless scaling of capillary rise, and to
compare the different derived options.

The basis for the dimensionless scalings is the differential equa-
tion of motion of the liquid inside a capillary tube. It can be derived
by solving an integral balance of the linear momentum in an appro-
priate control volume [5]. To solve the integrals and to obtain the
boundary conditions some assumptions have been made. First of all

the viscous losses in the tube are described using the Hagen-Poiseu-
ille law. Also the capillary pressure is assumed to be constant, hence a
static contact angle h is used (e.g. see [6,19]). Furthermore entry ef-
fects and losses in the liquid reservoir are neglected. With these
assumptions the equation of motion is given by (e.g. [3,16])

�q
dðh _hÞ

dt
¼ �2r cos h

R
þ 8lh

R2
_hþ qgh ðfor _h > 0Þ: ð1Þ

In this equation the momentum change (inertia, left hand side) is
balanced by the capillary pressure, the viscous forces and the hydro-
static pressure (left to right). r refers to the surface tension, R to the
inner tube radius, q to the fluid density, g to gravity and l to the
fluid viscosity. It is interesting to note that Eq. (1) is only valid for
a rising column. For a falling column – as it occurs in oscillating
cases – the different flow characteristics at the tube inlet have to
be considered. While for the rising column it acts as a sink, a jet is
emitted for the falling column. For the descending case, a _h2 term in-
cluded in the left hand side of Eq. (1) has to be omitted to obtain

�qh€h ¼ �2r cos h
R

þ 8lh

R2
_hþ qgh ðfor _h < 0Þ; ð2Þ

as shown by Lorenceau et al. [21].
The momentum balance can also be given for the capillary rise

of liquids in porous media, here the viscous term is replaced by the
Darcy law

�q
dðh _hÞ

dt
¼ �2r cos h

R
þ /lh

K
_hþ qgh ðfor _h > 0Þ: ð3Þ

/ denotes the porosity of the structure, and K its permeability.
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2. Dimensionless scaling

In this section the different dimensionless scaling options will
be discussed. The Buckingham p theorem and the approach de-
scribed by White [22] is used. The relevant definitions shall be
introduced briefly:

� Dimensional variables are the basic output of the experiment,
and normally the ones to be shown in a diagram. They vary dur-
ing a given run. In our case h and t (see Fig. 1).

� Dimensional parameters affect the variables, and may vary from
case to case, however remain constant during a given run. In our
case a, b and c, see Eqs. (4)–(6) below.

� Fundamental units are the units of the variables and parameters
e.g. meter, kilogram, second.

� Scaling parameters are chosen to convert the variables to a
dimensionless form. In our case: two can be chosen.

� Basic parameter is the – in our case one – remaining parameter.
� Dimensionless variables are the variables made dimensionless

by the scaling parameters.
� Dimensionless basic parameter is the basic parameter made

dimensionless using the scaling parameters.

In a graphic representation of the dimensionless solution the
axes are the dimensionless variables, while the dimensionless ba-
sic parameter is varied to plot a set of curves [22] (e.g. Fig. 2). With
varying dimensionless basic parameter the influence of the basic
parameter (and the corresponding force) can be observed. Regard-
ing Eqs. (1) and (3) we may define the following dimensional
parameters:

a ¼ qR
2r cos h

; ð4Þ

b ¼ 4l
Rr cos h

¼̂ /lR
2Kr cos h

; ð5Þ

c ¼ qgR
2r cos h

: ð6Þ

For b both the capillary tube and the Darcy version is given.
However, in favor of readability, we will not continue to explicate
the Darcy version in the further text. Please note that the parame-
ters a, b and c are not identical to those applied in [18,19]. Using
the introduced dimensional parameters one can rearrange Eqs.
(1) and (3) to obtain

a
dðh _hÞ

dt|fflfflfflffl{zfflfflfflffl}
inertial

þ bh _h|{z}
viscous

þ ch|{z}
hydrostatic

¼ 1: ð7Þ

It can now be observed that the momentum balance has be-
come much more clearly arranged and that each dimensional
parameter stands for a single term: a – inertia, b – viscous effects

and c – hydrostatic effects. Table 1 summarizes the three different
scaling options that will be examined one by one in the next
sections.

3. Viscous effects and gravity as scaling forces ðyÞ

Here, b (viscous effects) and c (gravity) are used as scaling
parameters, the remaining parameter a (inertia) is used as basic
parameter. The resulting dimensionless variables and the dimen-
sionless basic parameter are derived by applying the Buckingham
p theorem as shown in Appendix A

py1 ¼ hy ¼ ch ¼ qgR
2r cos h

h; ð8Þ

and

py2 ¼ ty ¼ c2t
b
¼ q2g2R3

16lr cos h
t: ð9Þ

These two dimensionless variables have been used by Zhmud
et al. [16] and Fries and Dreyer [18]. The dimensionless basic
parameter reads as follows:

py3 ¼ X ¼

ffiffiffiffiffiffiffi
b2

ac2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128r cos hl2

q3g2R5

s
: ð10Þ

According to Quéré et al. [14], we denote the basic dimension-
less parameter py3 as X. Here, X can be used to measure the influ-
ence of inertia. In Fig. 2 it can be seen that for decreasing X
(increasing inertia, see arrow) the oscillations and the overshoot
increase. This is consistent with Quéré et al. who find oscillations
to occur for X 6 2. It is interesting to note that for all three scaling
options presented in this article X (=p3) is mathematically the
same, however, its meaning changes from scaling to scaling [22].
Thus X always reflects the influence of the chosen basic parameter.
For example, as will be shown later in further detail, X can become
infinite in two limits which are physically very different: For a non
inertial case (the Washburn limit) with a ¼ 0, and for the no grav-
ity case (the Bosanquet limit) with c ¼ 0.

Fig. 1. Liquid rise in a capillary tube [19].

Fig. 2. Plot showing the dimensionless numerical solution of Eqs. (11) and (12).
Viscosity and gravity are the scaling forces, inertia is the basic parameter for the set
of curves. The points refer to the analytic solution for X!1 by Washburn.

Table 1
Scaling options.

Option Basic parameter Scaling parameters

1 a (inertia) b (viscosity) and c (gravity)
2 b (viscosity) a (inertia) and c (gravity)
3 c (gravity) a (inertia) and b (viscosity)
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