Sector Participation Association Software Study of The Liver HEPATOLOGY

Effect of nucleos(t)ide analogue therapy on hepatocarcinogenesis in chronic hepatitis B patients: A propensity score analysis

Takashi Kumada^{1,*}, Hidenori Toyoda¹, Toshifumi Tada¹, Seiki Kiriyama¹, Makoto Tanikawa¹, Yasuhiro Hisanaga¹, Akira Kanamori¹, Takurou Niinomi¹, Satoshi Yasuda¹, Yusuke Andou¹, Kenta Yamamoto¹, Junko Tanaka²

¹Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan; ²Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan

Background & Aims: Some patients with chronic hepatitis B virus (HBV) infection progress to hepatocellular carcinoma (HCC). However, the long-term effect of nucleos(t)ide analogue (NA) therapy on progression to HCC is unclear.

Methods: Therefore, we compared chronic hepatitis B patients who received NA therapy to those who did not, using a propensity analysis.

Results: Of 785 consecutive HBV carriers between 1998 and 2008, 117 patients who received NA therapy and 117 patients who did not, were selected by eligibility criteria and propensity score matching. Factors associated with the development of HCC were analyzed. In the follow-up period, HCC developed in 57 of 234 patients (24.4%). Factors significantly associated with the incidence of HCC, as determined by Cox proportional hazards models, include higher age (hazard ratio, 4.36 [95% confidence interval, 1.33–14.29], p = 0.015), NA treatment (0.28 [0.13–0.62], p = 0.002), basal core promoter (BCP) mutations (12.74 [1.74–93.11], p = 0.012), high HBV core-related antigen (HBcrAg) (2.77 [1.07–7.17], p = 0.036), and high gamma glutamyl transpeptidase levels (2.76 [1.49–5.12], p = 0.001).

Conclusions: NA therapy reduced the risk of HCC compared with untreated controls. Higher serum levels of HBcrAg and BCP mutations are associated with progression to HCC, independent of NA therapy.

© 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Introduction

An estimated 350 million individuals worldwide are chronically infected with hepatitis B virus (HBV), of whom 1 million die

E-mail address: hosp3@omh.ogaki.gifu.jp (T. Kumada).

Abbreviations: HCC, hepatocellular carcinoma; HBV, hepatitis B virus; NA, nucleos(t)ide analogue; HBcrAg, HBV core-related antigen; BCP, basal core promoter; gamma-GTP, gamma glutamyl transpeptidase.

annually from HBV-related liver disease [1]. Chronic HBV infection is recognized as a major risk factor for the development of hepatocellular carcinoma (HCC) [1,2]. Hepatitis B surface antigen (HBsAg)-positive patients have a 70-fold increased risk of developing HCC compared to HBsAg seronegative counterparts [3,4]. HBV infection is endemic in Southeast Asia, China, Taiwan, Korea, and sub-Saharan Africa, where up to 85–95% of patients with HCC are HBsAg positive [5]. HCC is the third and fifth leading cause of cancer death in men and women, respectively, and the number of deaths and the mortality rate from HCC have greatly increased in Japan since 1975 [6]. Hepatitis C virus (HCV)-related HCC accounts for 75% of all HCCs in Japan and HBV-related HCC accounts for 15% [6].

In 2004, Liaw *et al.* reported a significant reduction in HCC in 651 adults receiving lamivudine after adjustment for baseline variables (hazard ratio, 0.49 [95% confidence interval (95% CI), 0.25–0.99], p = 0.047) [7]. However, the results were not significant after exclusion of 5 patients who developed HCC within 1 year of randomization (0.47 [0.22–1.00], p = 0.052). Therefore, in 2009, the National Institutes of Health Consensus Development Conference concluded that there was insufficient evidence to assess whether nucleos(t)ide analogue (NA) therapy can prevent the development of HCC [8].

The long-term use of lamivudine has not been recommended because of tyrosine-methionine-aspartate-aspartate (YMDD) mutations, which have occasionally been associated with severe and even fatal flares of hepatitis [9,10]. Therefore, adefovir dipivoxil should be added immediately in patients with virological or biochemical breakthroughs or no response. Currently, there are 2 nucleoside agents (lamivudine, entecavir) and 1 nucleotide agent (adefovir dipivoxil) available for treatment of HBV infection in Japan. The agent with the higher genetic barrier to resistance, entecavir, is considered the initial drug of choice [11]. Recently, 3 studies on lamivudine suggested that long-term sustained viral suppression was associated with a reduced likelihood of developing HCC [12–14].

In this study, we sought to determine if NA therapy was associated with a reduction in the development of HCC. Since the validity of treatment effects in observational studies may be limited by selection bias and confounding factors, we performed a propensity analysis [15].

Keywords: HBcrAg; BCP; Gamma-GTP; Average integration value; HBV DNA. Received 25 July 2012; received in revised form 17 October 2012; accepted 22 October 2012; available online 30 October 2012

^{*} Corresponding author. Address: Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, 4-86, Minaminokawa-cho, Ogaki, Gifu 503-8052, Japan. Tel.: +81 584 81 3341; fax: +81 584 75 5715.

Research Article

Materials and methods

Patient selection

The study protocol was approved by the Institutional Ethics Committee of Ogaki Municipal Hospital in January 2011, and was in compliance with the Declaration of Helsinki. Written informed consent for the use of stored serum samples for the study was obtained from all patients.

Between 1998 and 2008, 1220 consecutive HBsAg-positive patients, who visited the Department of Gastroenterology and Hepatology at Ogaki Municipal Hospital, were prospectively enrolled in our HCC surveillance program. Of these, 785 patients met the following inclusion criteria: HBsAg positive for more than 6 months, no evidence of HCV co-infection, exclusion of other causes of chronic liver disease (alcohol consumption >80 g/day, hepatotoxic drugs, autoimmune hepatitis, primary biliary cirrhosis, hemochromatosis, or Wilson's disease), follow-up duration of greater than 3 years, no evidence of HCC for at least 1 year from the start of the follow-up period, receiving no interferon treatment, and receiving NA therapy for more than 1 year before the detection of HCC (Fig. 1). In patients on NA therapy, the date of NA therapy initiation was considered the starting point of the follow-up period.

Of these 785 patients, 148 received NA therapy (NA group) and 637 patients did not receive NA therapy (non-NA group) during the follow-up period. To reduce the confounding effects of covariates, we used propensity scores to match NA patients to unique non-NA patients. Six covariates including age, sex, HBV DNA concentration, hepatitis B e antigen (HBeAg), platelet count, and alanine aminotransferase (ALT) activity were taken into account at the start of followup. We computed the propensity score by using logistic regression with the independent variable including age (<40 years or >40 years), sex (female or male), HBV DNA concentration (\$5.0 log copies/ml or >5.0 log copies/ml), HBeAg (negative or positive), platelet count (>150 \times 10³/m³ or \leq 150 \times 10³/m³), and ALT activity (<40 IU/ml or >40 IU/ml), as shown in previous reported cut-off values according to the indication for NA therapy [16-19]. This model yielded a c statistic of 0.85 (95% confidence interval [CI], 0.82-0.88), indicating very good ability of the propensity score model to predict treatment status. We sought to match each patient who received NA therapy to a patient who did not receive NA therapy, having a propensity by using greedy 5-1 digit matching [20]. Once this threshold was exceeded, a patient with NA therapy was excluded. This score ranged from 0.09198 to 0.98967 and, in effect, represented the probability that a patient would be receiving NA. We were able to match 117 patients with NA therapy to 117 unique patients without NA therapy. The follow-up period ended on 31 December, 2011 or the date when HCC occurrence was identified.

Surveillance and diagnosis

All patients were followed up at our hospital at least every 6 months. During each follow-up examination, platelet count, ALT, gamma glutamyl transpeptidase (gamma-GTP), total bilirubin, alkaline phosphatase (ALP), albumin, and alpha-fetoprotein (AFP) levels were measured. We used commercially available kits to test blood samples for HBsAg, HBeAg, and anti-HBe (Abbott Japan Co., Ltd., Tokyo,

Fig. 1. Flowchart of the patient selection process.

Japan). Before November 2007, the serum HBV DNA concentration was monitored by a polymerase chain reaction assay (COBAS Amplicor HBV monitor test, Roche Diagnostics K. K., Tokyo, Japan) with a lower detection limit of approximately 2.6 log copies/ml, and after December 2007, it was monitored with another polymerase chain reaction assay (COBAS AmpliPrep-COBAS TaqMan HBV Test, Roche Diagnostics K. K.), with a lower detection limit of approximately 2.1 log copies/ ml. HBV genotyping was performed as described previously [21]. Serum levels of HBV core-related antigen (HBcrAg) were measured using a chemiluminescence enzyme immunoassay (CLEIA) as described previously [22,23]. Precore nucleotide 1896 and basal core promoter (BCP) dinucleotide 1762/1764 were determined using the line probe assay (INNO-LiPA HBV PreCore assay; Innogenetics NV) [24,25]. The probes were designed to determine the nucleotides at position 1896 (G vs. A) in the BCP region. A line probe assay was used to identify any emergence of YMDD mutations (INNO-LiPA HBV DR assay; Innogenetics NV).

Platelet count, ALT, gamma-GTP, total bilirubin, ALP, albumin, AFP, and HBV DNA values were expressed as average integration values [26,27] after the start of follow-up.

According to the Clinical Practice Guidelines for Hepatocellular Carcinoma in Japan [28], we performed ultrasound (US) and monitoring of 3 biomarkers (AFP, Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein [AFP-L3], and desgamma-carboxy prothrombin [DCP]) every 3-4 months, and dynamic magnetic resonance imaging (MRI) every 12 months, for patients with cirrhosis under surveillance. For patients with chronic hepatitis, we performed US and monitoring of the 3 biomarkers every 6 months. Histological examinations were performed in 91 out of 234 patients. Among them, cirrhosis was diagnosed in 32 patients. In the remaining 143 patients, the diagnosis of cirrhosis was made according to typical US findings, e.g., superficial nodularity, a coarse parenchymal echo pattern, and signs of portal hypertension (splenomegaly >120 mm, dilated portal vein diameter >12 mm, patent collateral veins, or ascites) [29-31]. Patients who did not satisfy these criteria were classified as having chronic hepatitis. One hundred and forty-two patients were diagnosed with chronic hepatitis and 92 patients with cirrhosis. For diagnostic confirmation of HCC, patients underwent dynamic MRI. A histological diagnosis of HCC was made in 28 patients (surgical specimen, 23 patients; US-guided needle biopsy specimen, 5 patients). The remaining 29 patients were diagnosed with HCC based on typical dynamic MRI findings, including hypervascularity in the arterial phase with washout in the portal venous or delayed phase [32].

Treatments

In the NA group, 117 patients received NA therapy including 18 patients with lamivudine, 28 patients with lamivudine and adefovir dipivoxil, and 71 patients with entecavir. The indications for NA therapy followed the guidelines of the American Association for the Study of Liver Diseases (AASLD), the European Association for the Study of the Liver (EASL), or the Asian Pacific Association for the Study of the Liver (EASL). In contrast, of the 117 patients not on NA therapy, 104 did not receive treatment before NA was not yet approved in Japan and the remaining 13 patients declined NA therapy.

Statistical analysis

Continuous variables are expressed as medians (range). The Mann-Whitney U test was used for continuous variables, and the Chi-square test with Yates' correction or Fisher's exact test was used for categorical variables. Actuarial analysis of the cumulative incidence of hepatocarcinogenesis was performed using the Kaplan-Meier method, and differences were tested with the log-rank test. The Cox proportional hazards model and the forward selection method were used to estimate the relative risk of HCC associated with age (≤ 40 years or >40 years), sex (female or male), treatment (NA or no NA), HBsAg (≤3.0 log IU/ml or >3.0 log IU/ml), HBV DNA level (≤5.0 log copies/ml or >5.0 log copies/ml), HBeAg (negative or positive), precore region (wild type or mutant), BCP (wild type or mutant type), HBcrAg (<3.0 logU/ml or >3.0 logU/ml), platelet count $(>150 \times 10^3/m^3 \text{ or } \le 150 \times 10^3/m^3)$, ALT ($\le 40 \text{ IU/ml or } >40 \text{ IU/ml}$), total bilirubin, gamma-GTP, ALP, albumin, and AFP (≤10 ng/ml or >10 ng/ml) for univariate and multivariate analyses. We used the minimum or maximum of the reference values at our institution as cut-off values for total bilirubin, gamma-GTP, ALP, and albumin. We conducted a sensitivity analysis to determine the magnitude of an unmeasured confounder [36].

We considered *p* values of 0.05 or less to be significant. Statistical analysis was performed with SPSS, version 18.0 for Windows (International Business Machines Corporation, Tokyo, Japan).

Download English Version:

https://daneshyari.com/en/article/6105671

Download Persian Version:

https://daneshyari.com/article/6105671

Daneshyari.com