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The viscoelastic properties of adsorbed protein layer in food emulsions and foams are important
in providing stability to such systems. Linear stability analysis for a protein stabilized aqueous film
sandwiched between two semi-infinite oil phases with a viscoelastic liquid–liquid interface is presented.
The interfacial dilatational and shear viscoelastic properties are described by Maxwell models. The
aqueous film is found to be more stable for smaller values of dilatational (shear) relaxation times and
larger values of interfacial dilatational (shear) viscosities. The asymptotic values of maximum growth
coefficient for very large and very small values of interfacial dilatational (shear) viscosities were found to
be independent of relaxation times and correspond to those for immobile and fully mobile liquid–liquid
interfaces respectively. The aqueous film is shown to be more stable for larger viscosities of the oil phase
with the maximum growth coefficient approaching zero as the ratio of viscosities of oil and aqueous
phases approach very large values and an asymptotic value corresponding to that for a foam film for
very small viscosity ratios.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Thin liquid films are encountered in many food colloidal sys-
tems such as foams, emulsions, dispersions etc. Some of the ex-
amples of such food systems are whipped toppings, salad dress-
ing, mayonnaise, ice cream etc. The stability of such systems de-
pends on the stability of thin film separating gas bubbles, emulsion
droplets and dispersed particles. Food emulsifiers and proteins are
usually employed to provide stability to such colloidal systems. In
foams and emulsions, liquid from thin films drains due to capil-
lary forces as a result of surface/interfacial tension and radius of
curvature of film interface. The capillary pressure, responsible for
film drainage, is counterbalanced by intermolecular van der Waals,
steric, electrostatic, hydration and depletion interactions whenever
the film thickness becomes of the order of a few nanometers so
that the film eventually reaches a mechanical equilibrium. These
intermolecular interactions are mainly influenced by the emulsi-
fiers and proteins that are employed in such systems. Interfacial
tension and repulsive interactions between the two faces of the
film will tend to attenuate any imposed perturbations whereas the
van der Waals interactions will tend to enhance them thereby re-
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sulting in their growth. The film is deemed stable if the imposed
perturbations decay whereas the growth of the perturbations will
lead to eventual film rupture. Extensive investigations [1–9] on lin-
ear stability analysis of equilibrium thin films have been carried
out to evaluate the growth of perturbations and the timescale of
resulting film rupture. Recent studies have extended the analysis
of rupture of thin film on solid [10,11] as well as foam film [12]
due to imposed random mechanical perturbations. The effect of
these intermolecular interactions is usually accounted for through
a disjoining pressure [13] in the normal stress boundary condi-
tions. It has been shown that the imposed perturbations grow
whenever this disjoining pressure gradient (with respect to film
thickness) is positive [3]. The rupture time of an equilibrium film
can be evaluated as the time at which the amplitude of growing
imposed perturbation equals one half the film thickness. Previous
studies have investigated the effects of density variations [14] and
hydrophobic interactions [15] on film stability. Rupture of non-
Newtonian [16,17] as well as viscoelastic [18,19] thin films have
been investigated. The analysis has been extended to rupture of a
draining film due to imposed thermal [13,20] as well as random
mechanical [21] perturbations. In food systems, proteins are ex-
tensively employed to provide stability to emulsions and foams by
modifying the interparticle forces and, more importantly, by pro-
viding improved interfacial rheological properties to the oil–water
and air–water interfaces. Surface rheological measurements have
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Fig. 1. Schematic of a thin emulsion film between two semi-infinite oil phases.

shown that adsorbed films of disordered proteins (such as αs1-
casein, β-casein) have a low surface shear viscosity whereas films
of globular proteins (such as α-lactalbumin, β-lactoglobulin) are
highly viscous [22–25]. The viscoelastic properties of adsorbed pro-
tein film are important for stabilizing oil droplet and gas bubbles
against coalescence in emulsion and foam systems [26,27]. In a
previous study [28], we have investigated the stability of a thin
film on a solid surface with a viscoelastic air–liquid interface by
linear stability analysis. In this study, we extend this analysis to
an aqueous thin film sandwiched between two semi-infinite oil
phases accounting for the viscoelastic nature of oil–water inter-
face. The stability analysis gives information on the dependence of
maximum growth coefficient and film rupture time on interfacial
viscoelastic properties.

2. Governing equations

Consider a thin protein stabilized aqueous film of thickness 2h
sandwiched between two semi-infinite oil phases. The schematic
of the film is shown in Fig. 1. The film is of length L in the x
direction and can be considered semi infinite in the other direc-
tion. The plane of symmetry is the origin of y direction. Therefore,
y = ±h refer to the top and bottom oil–water interfaces respec-
tively. At t = 0, an asymmetric periodic perturbation f0 sin(kx) of
wavenumber k is imposed on the two faces of the film. The im-
position of this perturbation will result in a flow within the film
which is also influenced by Marangoni flow. If the perturbation
grows, the film will eventually rupture; otherwise the film will be
stable. The equations to describe the flow due to imposed distur-
bance are given by.

2.1. Aqueous film

The continuity equation is

∂vx

∂x
+ ∂v y

∂ y
= 0. (1)

Assuming quasi-steady state, the equations of motion are

−∂ p

∂x
+ μ

(
∂2 vx

∂x2
+ ∂2 vx

∂ y2

)
= 0, (2)

−∂ p

∂ y
+ μ

(
∂2 v y

∂x2
+ ∂2 v y

∂ y2

)
= 0. (3)

The validity of the assumption of quasi-steady state is discussed
elsewhere [11]. Since the motion in the liquid film is due to
the imposed perturbation, it is reasonable to assume that the
film thickness h(x, t), pressure p(x, y, t), velocity in x direction
vx(x, y, t), and velocity in y direction v y(x, y, t) also have oscil-
lations of the same frequency as the imposed perturbation, i.e.,

f (x, t) = f0 exp(ikx + βt), (4)

p(x, y, t) = pss + p′(y)exp(ikx + βt), (5)

vx(x, y, t) = v ′
x(y)exp(ikx + βt), (6)

v y(x, y, t) = v ′
y(y)exp(ikx + βt), (7)

where pss is the pressure in the Plateau border and β is the
growth coefficient. If β is positive, then the amplitude of perturba-
tion will keep increasing resulting in rupture of the film, otherwise
the perturbation decreases and disappears eventually.

Symmetry condition at the midpoint gives,

y = 0,
∂vx(x,0, t)

∂ y
= 0, (8)

y = 0,
∂v y(x,0, t)

∂ y
= 0. (9)

At the oil–water interface, the kinematic condition gives,

y = h, v y(x,h, t) = ∂ f

∂t
. (10)

It is to be noted that the surfactant (protein) is soluble only in
the aqueous phase. Equation of continuity for the surfactant in the
aqueous phase for quasi steady state yields,

∂2c

∂x2
+ ∂2c

∂ y2
= 0 (11)

with the boundary conditions,

x = 0, c = c0,

x = L, c = c0, (12)

y = 0,
∂c

∂ y
= 0. (13)

The surfactant flux to the interface can be decomposed into (i) dif-
fusive flux jdiff to the subsurface and (ii) adsorptive flux jads from
the subsurface to the interface. These are given by,

jdiff = −D
∂c

∂ y
at y = ysub, (14)

where ysub refers to the location of the subsurface and

jads = −kads
(
Γ − Γ0(csub)

)
. (15)

In the above equation, kads is the adsorption rate constant, Γ is the
surface concentration of surfactant and Γ0(csub) is the equilibrium
surface concentration corresponding to the subsurface concentra-
tion csub. The above equation is written for small deviation from
the equilibrium [13]. When the energy barrier to adsorption is
small (much less than kT ), every surfactant molecule is immedi-
ately adsorbed upon its arrival at the subsurface. In this case, the
surfactant transport to the interface is governed by Eq. (14) [13].
Also, for small subsurface thickness, ysub ≈ h.

Surfactant balance at the liquid–liquid interface yields,

−D
∂c

∂ y

∣∣∣∣
y=h

= ∂

∂x

(
Γ v0

x

) − Ds
∂2Γ

∂x2
+ ∂Γ

∂t
, (16)

where D and Γ are the diffusion coefficient and surface concen-
tration of surfactant respectively in the aqueous phase, v0

x is the
interfacial velocity of the film and Ds is the surface diffusion co-
efficient. It is to be noted that the surfactant is not soluble in the
oil phase. Therefore, oil phase need not be included in the above
conservation equation for the surfactant, Eq. (16) can be rewritten
as,

−D
∂c

∂ y

∣∣∣∣
y=h

= ∂

∂x

(
Γ v0

x

) − Ds
∂2Γ

∂x2
+

(
∂Γ

∂c

)
∂c

∂t
. (17)

For Langmuir adsorption isotherm,

Γ0 = Γm K c

1 + K c
, (18)

where K and Γm are constants. Equation (17) can be non-
dimensionalized to yield,
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