Long-term continuous entecavir therapy in nucleos(t)ide-naïve chronic hepatitis B patients Atsushi Ono¹, Fumitaka Suzuki^{1,*}, Yusuke Kawamura¹, Hitomi Sezaki¹, Tetsuya Hosaka¹, Norio Akuta¹, Masahiro Kobayashi¹, Yoshiyuki Suzuki¹, Satoshi Saitou¹, Yasuji Arase¹, Kenji Ikeda¹, Mariko Kobayashi², Sachiyo Watahiki², Rie Mineta², Hiromitsu Kumada¹ ¹Department of Hepatology, Toranomon Hospital, Tokyo, Japan; ²Research Institute for Hepatology, Toranomon Hospital, Tokyo, Japan **Background & Aims**: We determined the antiviral potency and viral resistance rate after 4 years of continuous entecavir treatment in patients with chronic hepatitis B (CHB) infection. **Methods**: The cumulative rates of undetectable hepatitis B virus DNA (HBV DNA; <2.6 log₁₀ copies/ml), hepatitis B e antigen (HBeAg) seronegativity, seroconversion, alanine aminotransferase (ALT) normalization, and entecavir signature mutations were calculated in 474 nucleos(t)ide-naïve CHB patients (HBeAgpositive: 47%) on continuous entecavir treatment for 4 years. **Results**: Median age was 47 years and follow-up period was 2.4 years, with 403, 281, 165, and 73 patients followed-up for at least 1, 2, 3, and 4 years, respectively. Incremental increases were observed in the rates of undetectable HBV DNA, HBeAg seroclearance and seroconversion, and ALT normalization, reaching 96%, 42%, 38% and 93%, respectively, by the fourth year. In all, 100% and 93% of patients negative and positive for HBeAg, respectively, had undetectable HBV DNA at year 4. Of 165 patients, HBV DNA was detectable in nine patients after 3 years. Multivariate analysis identified HBV DNA level (\leq 7.6 log₁₀ copies/ml, OR = 15.8; 95% CI = 43.1–79.9, P = 0.001) as an independent predictor of undetectable HBV DNA at year 3. Five patients experienced virological breakthrough including two (0.4%) who developed entecavir-resistance mutations. **Conclusions**: Continuous treatment of nucleos(t)ide-naïve CHB patients with entecavir over 4 years was associated with 96% chance of undetectable HBV DNA and only 0.4% chance of emerging entecavir-resistant mutations. © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. Keywords: Hepatitis B virus; Entecavir; Resistance; Virological breakthrough. Received 29 September 2011; received in revised form 12 April 2012; accepted 18 April 2012; available online 30 May 2012 Abbreviations: AFP, α fetoprotein; ALT, alanine aminorransferase; AST, aspartate transaminase; CHB, chronic hepatitis B; CIs, confidence intervals; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B virus surface antigen; HBV, hepatitis B virus; HBV DNA, hepatitis B virus DNA; ORs, odds ratios; PCR, polymerase chain reaction; ULN, upper limit of normal; VBT, virologic breakthrough. #### Introduction Approximately 350–400 million people worldwide have chronic hepatitis B (CHB) infection, the majority of whom live in the Asia–Pacific region [1,2]. CHB patients with elevated viral load are at risk of developing cirrhosis, liver failure, and hepatocellular carcinoma. Recent investigations have shown that entecavir suppressed HBV DNA replication to undetectable levels and normalized alanine aminotransferase (ALT) levels in nucleos(t)ide-naive CHB patients in Japan and other countries [3-10]. In addition, genotypic resistance to long-term entecavir monotherapy remained rare [5,6,9,10]. To date, there are two 5-year studies [6,8] and two 3-year studies [7,9] of entecavir therapy for nucleos(t)idenaïve patients. Both studies stemmed from extension studies with the original cohorts from two large-scale phase III trials of treatment-naïve patients [3,4]. In these trials, patients were administered 0.5 mg entecavir for 1 year and later divided into three categories: (i) complete responders, defined as patients with HBV DNA $<7 \times 10^5$ copies/ml and ALT level <1.25 times the upper limit of normal (ULN) for hepatitis B e antigen (HBeAg)-negative patients and an additional loss of HBeAg for HBeAg-positive patients; (ii) non-responders, defined as HBV DNA $\geqslant 7 \times 10^5$ copies/ml; and, (iii) virological responders, defined as HBV DNA $<7 \times 10^5$ copies/ml and ALT $>1.25 \times$ ULN regardless of HBeAg status or persistent HBeAg for HBeAgpositive patients. Treatment was terminated in the complete responders but continued in virological responders. Nonresponders were provided additional therapy in a rollover study in which some patients were initially treated with a combination of 1 mg entecavir and lamivudine for several months before receiving 1 mg entecavir as monotherapy. Furthermore, a substantial proportion of complete responders relapsed after various intervals following cessation of therapy and they were also assigned to a rollover study receiving 1 mg entecavir monotherapy. Because of these strict protocols, the precise viralsuppression and drug-resistance data for treatment-naïve patients who were treated continuously with 0.5 mg entecavir daily (the recommended dosage) remain unavailable. The aims of this cohort study were (1) to investigate the efficacy of entecavir in clinical practice beyond 4 years for nucleos(t)ide-naïve CHB and cirrhosis patients, (2) to explore baseline factors associated with virological response to entecavir, ^{*} Corresponding author. Address: Department of Hepatology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan. Tel.: +81 (44) 877 5111; fax: +81 (44) 860 1623. E-mail address: fumitakas@toranomon.gr.jp (F. Suzuki). and (3) to investigate virological breakthrough during long-term entecavir treatment. #### Patients and methods #### Study population We performed a retrospective analysis of 474 CHB and cirrhosis patients who received entecavir treatment at the Department of Hepatology, Toranomon Hospital, Tokyo, from March 2004 to May 2011, and adhered to the treatment for more than 6 months (Table 1). All patients were negative for hepatitis C serological markers, but all had detectable HBV surface antigen (HBsAg) for at least 6 months prior to the start of entecavir therapy. Two patients received 0.01 mg entecavir and one patient received 0.1 mg entecavir for 24 weeks, prior to 0.5 mg/day from a phase II study ETV-047 in Japan [11]. The other patients received 0.5 mg entecavir. None had received other nucleos(t)ide analogs. The diagnosis of chronic hepatitis and cirrhosis was established by needle biopsy. peritoneoscopy, or clinically before treatment. The clinical criteria for chronic hepatitis included elevated ALT levels over 6 months and absence of clinical evidence of portal hypertension, such as esophageal varices, ascites, hepatic encephalopathy, and features suggestive of cirrhosis on ultrasonography. Chronic hepatitis and cirrhosis were diagnosed in 374 and 102 patients, respectively. Twenty-eight patients were lost to follow-up, including 10 patients who moved to other locations, seven who never visited the hospital again, two who became pregnant, four who died, four who had virological breakthrough (VBT), and one who showed disappearance of HBsAg. Moreover, 18 patients developed HCC during treatment and their data until loss to follow-up or diagnosis of HCC were analyzed. Informed consent was obtained from each patient enrolled in the study and the study protocol conformed to the ethical guidelines of the Declaration of Helsinki and was approved by the Toranomon Hospital Ethical Committee. #### Analysis of treatment efficacy The clinical efficacy of entecavir was assessed as the proportion of patients who achieved HBV DNA suppression to undetectable levels ($<2.6\log_{10}$ copies/ml), and those who achieved ALT normalization ($<1\times$ ULN). HBV DNA was measured using **Table 1. Characteristics of patients at the start of entecavir therapy.** Table data are number of patients or median (range). | Demography | | |--|-----------------| | n | 474 | | Sex, male/female | 321/153 | | Age, yr | 47 (17-82) | | Family history of HBV | 291 (61%) | | Cirrhosis | 102 (22%) | | Median duration of treatment, yr (range) | 2.37 (0.5-7.2) | | Laboratory data | | | AST, IU/L | 52 (14-1595) | | ALT, IU/L | 70 (8-2121) | | Bilirubin, mg/dl | 0.7 (0.2-3.9) | | γ-GTP, IU/L | 38 (9-679) | | Albumin, g/dl | 3.9 (1.9-5.1) | | Alpha fetoprotein, ng/ml | 5 (1-379) | | Viral load, log ₁₀ copies/ml | 6.7 (<2.6->9.0) | | HBeAg-positive | 222 (47%) | | HBV genotypes, A/B/C/H/unknown | 12/67/336/2/57 | ### JOURNAL OF HEPATOLOGY the polymerase chain reaction (PCR)-based Amplicor HBV Monitor assay (Roche Diagnostics, Indianapolis, IN, lower limit of detection of 2.6log₁₀ copies/ml) [12]. HBeAg seroclearance and seroconversion were also analyzed. Measurements were made on stored samples taken at baseline and every year after that since entecavir treatment initiation. #### Statistical analysis Differences between groups were examined for statistical significance using the χ^2 test where appropriate. Spearman correlation coefficient (two-tailed) was used to evaluate the correlation between albumin and other factors. Independent predictive factors associated with response to entecavir treatment were determined using multivariate multiple logistic regression. The following 12 potential predictors of response to entecavir treatment were assessed in this study: age, sex, severity of liver disease (CH or cirrhosis), HBV genotype, as well as levels of aspartate transaminase (AST), ALT, bilirubin, albumin, platelets, α fetoprotein (AFP), HBeAg, and HBV DNA. All factors found to be at least marginally associated with undetectable levels of HBV DNA after 1–4 years (p <0.10) were entered into the multivariate multiple logistic regression analysis. The above calculations were performed using The Statistical Package for Social Sciences version 11.0.1J (SPSS Inc., Chicago, IL). The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the relative risk confidence. Independent risk factors predicting achievement of HBeAg seroclearance and seroconversion were analyzed using stepwise Cox regression analysis. Potential factors that could predict achievement of HBeAg seroclearance assessed here were the above 11 variables, each transformed into categorical data consisting of two simple ordinal numbers for univariate and multivariate analyses. All factors found to be at least marginally associated with HBeAg seroclearance and seroconversion (p <0.10) were tested in the multivariate Cox proportional hazard model. A Kaplan–Meier estimate was performed using the SPSS software, and p values were calculated using the Cox–Mantel log-rank test. The Mann–Whitney U test was used for comparison of HBV DNA levels in patients with seroconversion to those with seroclearance. A two-tailed p value <0.05 was considered statistically significant. Fig. 1. Percentages of patients who had undetectable levels of HBV DNA between years 1 through 4. (A) HBeAg-positive and negative patients and (B) patients with genotype A, B, or C. ## Download English Version: # https://daneshyari.com/en/article/6106503 Download Persian Version: https://daneshyari.com/article/6106503 <u>Daneshyari.com</u>