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This paper presents a thermodynamic isotherm derived from solution thermodynamics principles to
describe gas adsorption on microporous materials. This isotherm relies on a potential relationship
between the integral free energy of adsorption relative to saturation, Ψ/RT , expressed by the Kiselev
equation, and the variable Z = 1/−Ln(Π), being Π the relative pressure. A mathematical analysis reveals
that the adsorption energy heterogeneity in the micropores is collected in a characteristic parameter of
the isotherm, m, that can be related to the α parameter of the Dubinin–Astakhov isotherm in a simple
way (m = α + 1). The isotherm also predicts a plateau in Ψ/RT at extremely low pressures (Π < 10−7).
Neimark’s thermodynamic equation accounting for gas adsorption on mesoporous solids is found to be a
particular case of the isotherm presented in this study. The Langmuir isotherm only shows consistency
with the thermodynamic isotherm for a reduced combination of values of the relevant parameters, not
usually found in common adsorbents. The suitability of the thermodynamic isotherm is experimentally
assessed by testing a collection of microporous materials, including activated carbons, carbon nanotubes,
and zeolites.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Microporous materials (e.g., activated carbons, zeolites) are
used in a great variety of gas separation, purification, and catalytic
processes. The adsorption capacity of these materials is strongly
determined by their textural properties, such as their “apparent”
internal surface, pore geometry, pore size distribution, and surface
irregularity. The microstructure of microporous materials can be
inferred from physical adsorption of gases and vapors of different
sizes and polarities (most often nitrogen at 77 K). A critical review
about porous material characterization by gas adsorption methods
can be found in Ref. [1].

Considerable attention has been devoted in the past to the
development of suitable isotherm models to describe gas adsorp-
tion on microporous materials. Early models such as the Langmuir
isotherm of idealized monolayer adsorption are not applicable to
physical adsorption by microporous adsorbents despite the char-
acteristic form of the isotherm (Type I) [1–3]. In fact, the form
of this isotherm is ascribed to a micropore volume-filling process
(3D) instead of a layer-by-layer surface coverage (2D) [2,4], and the
plateau does not correspond to monolayer completion.
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The vacancy solution theory (VST) [5–9] is one of the first ap-
proaches to describe gas adsorption on homogeneous microporous
solids as a pore-filling process. In this theory, the adsorbed and
gas phases are treated as two vacancy solutions. The vacancy is an
imaginary solvent occupying spaces that will be filled by the sor-
bate. The composition relationship between the two phases is de-
rived from “osmotic” equilibrium criteria. Additional assumptions
concerning vacancy properties and activity coefficients of the va-
cancy solution lead to some fundamental isotherm equations (e.g.,
Langmuir, Henry, Volmer, and Fowler–Guggenheim) [10]. This the-
ory offers a unified representation of single as well as mixture
adsorption within the same framework.

Another approach is based on the volume-filling theory of mi-
cropores (TVFM) developed by Dubinin and co-workers [11–13].
The well-known Dubinin–Radushkevich (DR) isotherm [14,15] can
be deduced from this theory combined with the Polayni’s ad-
sorption potential. Several authors have postulated that the DR
isotherm applies only to solids with a uniform structure of microp-
ores [16,17]. Alternative models such as the Dubinin–Astakhov (DA)
isotherm [12,18] have been proposed to account for gas adsorption
in microporous solids, including bound impurities and functional
groups. The Dubinin–Astakhov isotherm has two parameters: the
characteristic exponent, α, and the energy of adsorption, E0. The
characteristic exponent of this isotherm (usually in the range 1–5)
can be linked to the degree of heterogeneity of the microporous

0021-9797/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2008.10.086

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcis
mailto:jllorensl@ub.edu
http://dx.doi.org/10.1016/j.jcis.2008.10.086


J. Llorens, M. Pera-Titus / Journal of Colloid and Interface Science 331 (2009) 302–311 303

system [19–21]. On the other hand, the energy of adsorption can
be linked to the average micropore width [22]. The DR equation
can be regarded as a particular case of the DA isotherm for α = 2.
Energy heterogeneity can also arise from structural heterogeneity
in the form of the micropore size distribution, with adsorption en-
ergy varying with pore size. According to the theory of adsorption
in micropores, such a distribution can be obtained by solving the
Fredholm equation of the first kind defined by [2,23]

θt =
zmax∫

zmin

θtheor(z, p) f (z)δz, (1)

where z describes the structural heterogeneity of the adsorbent,
f (z) is the pore size distribution designed in the micropore re-
gion (zmin, zmax), and θtheor is the local adsorption isotherm (i.e.,
kernel) that describes adsorption on a homogeneous patch of the
adsorbent. The function f (z) can be selected to include the effect
of surface impurities and irregularities embedded in model con-
stants [24,25].

As proposed by Pfeifer and Avnir [26–28], fractal geometry
can be applied in combination with Eq. (1) to account for gas
adsorption on heterogeneous materials. In this way, fractal ana-
logues of the Frenkel–Hasley–Hill (f-FHH), Brunauer–Emmet–Teller
(fn-BET), and DA (FRDA) isotherms have been obtained [29–32].
The fractal dimension of a surface accessible to adsorption, D S ,
is a global measure of structural and surface irregularities of a
given solid, remaining invariant over a certain degree of resolu-
tion (self-similitude) [33]. It should be emphasized that, for highly
porous systems, the fractal dimension does not reflect the structure
of the basic objects such as pores or clusters, but their distribu-
tion [34]. The fractal dimension can vary from 2 for a perfectly
regular smooth surface to 3 for a complex surface. In addition to
gas adsorption, the fractal dimension of a surface can be deter-
mined from several types of experiments, including porosimetry,
small-angle X-ray and neutron scattering (SAXS and SANS), and
nuclear magnetic resonance (NMR) [28,29,35–37].

In addition to these fractal analogue adsorption isotherms,
Neimark [38] has proposed a thermodynamic equation for the de-
termination of the fractal dimension of mesoporous solids from
adsorption data. The theoretical basis for this method is a rela-
tionship between the surface area of the adsorbed liquid film, S ,
and the mean pore radius, r:

Ln(S) = const + (Ds − 2) Ln(r). (2)

Equation (2) can be expressed as a function of the relative pres-
sure, P/P 0, by relating it to the mean pore radius,

Ln(S) = const + (Ds − 2) Ln

[
− Ln

(
P

P 0

)]
. (3)

The surface area of the adsorbed film can be calculated by the
Kiselev equation,

S(Π) = RT

γ

qmax∫
q

[
− Ln

(
P

P 0

)]
δq, (4)

where qmax denotes the amount adsorbed at P/P 0 → 1, and γ is
the surface tension of the sorbate. This thermodynamic method is
compatible with the classical FHH theory in the capillary conden-
sation regime, since both rely on the Kelvin equation in a fractal
context [35,38].

In this paper, we present a thermodynamic model to de-
scribe gas adsorption on microporous materials, relying on the DA
isotherm and the solution thermodynamics approach proposed by
Myers for pure [39] and mixture adsorption [40]. In this analy-
sis, the concept of surface potential, Φ , instead of the classical

spreading pressure, collects the information related to the energy
at which the sorbate molecules adsorb. This isotherm provides rel-
evant information about the adsorption energy heterogeneity of
the material, involving a separate analysis of the contribution of
the physical structure of the adsorbent and the sorbate–adsorbent
interaction. Neimark’s equation can be obtained as a particular
case of the thermodynamic isotherm presented here when applied
to mesoporous materials with surface heterogeneity. This analy-
sis has proven useful to correlate the reaction yields for the Si
dissolution process of dealuminated kaolin in sodium–potassium
hydroxide [41].

2. Theory

2.1. Description of adsorption on microporous materials using solution
thermodynamics

From the standpoint of solution thermodynamics, an adsorp-
tion system is regarded as consisting of three phases: a gas phase
(g), a solid phase or “solvent” (s), and an adsorbed phase or “so-
lute” (a). The adsorbed phase has no volume; i.e., Va = 0. This
phase, together with the solid phase, constitutes the “condensed
phase” (v). The volumes of all phases are assumed not to change
during the adsorption process. The volume of the gas phase, V g ,
including that related to micropores, is determined assuming that
helium, as a reference gas, does not adsorb at near-ambient tem-
perature and atmospheric pressure. For such a system, the specific
free energy of the adsorbed phase is given by [40]

Ḡa = Ū a − T S̄a = μq + Φ, (5)

where U is the internal energy, S the entropy, μ the chemical
potential, and Φ the surface potential, which equals the differ-
ence between the actual surface potential of the adsorbent and the
chemical potential of the adsorbent without loading, i.e., μ′ − μ′ S .
The symbol ‘–’ on top refers to specific variables related to the
mass of adsorbent. The specific free energy of the adsorbed phase
includes two contributions: (1) the free energy of q moles per kg
of adsorbent adsorbed at equilibrium with the gas phase, namely
with the same chemical potential, and (2) the surface potential,
Φ , which depends on the sorbate–adsorbent interaction and tends
to zero when there is no adsorption. The sorbate–adsorbent in-
teraction alters the surface potential of the adsorbed phase. The
differentiation of Eq. (5) at constant temperature allows obtaining
δḠa = μδq and δΦ = −q ·δμ (Gibbs–Duhem equation), relating the
surface potential to the chemical potential of the condensed phase.
Assuming δμ = RT δ Ln(P ) in the case of ideal gases (otherwise the
pressure has to be substituted by a fugacity), we can obtain

Φ

RT
= −

P∫
0

qδ Ln(P ) = −qM

P∫
0

θδ Ln(P ), (6)

where θ = q/qM and qM = q(P 0). As can be deduced from Eq. (6),
the surface potential is always negative and increases in absolute
value as this approaches 0.

The integral free energy of the adsorbed phase, 	Ḡa , is defined
as the difference between the internal free energy of the adsorbed
phase and the free energy of the same amount of sorbate at satu-
ration pressure, μ0,

	Ḡa = Ḡa − qμ0. (7)

Combining Eqs. (6) and (7), we obtain

	Ḡa = q
(
μ − μ0) + Φ. (8)

The differential free energy of adsorption, 	ḡa , can be obtained by
differentiating the integral free energy,

	ḡa = ∂	Ga

∂q

∣∣∣∣
T

= μ − μ0 = RT Ln

(
P

P 0

)
. (9)



Download English Version:

https://daneshyari.com/en/article/610822

Download Persian Version:

https://daneshyari.com/article/610822

Daneshyari.com

https://daneshyari.com/en/article/610822
https://daneshyari.com/article/610822
https://daneshyari.com

