Journal of Hepatology 50 (2009) 100-110 ## Journal of Hepatology www.elsevier.com/locate/jhep # Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma Taro Yamashita¹, Masao Honda^{1,2}, Hajime Takatori¹, Ryuhei Nishino¹, Hiroshi Minato³, Hiroyuki Takamura⁴, Tetsuo Ohta⁴, Shuichi Kaneko^{1,*} Background/Aims: Metabolic dysregulation is one of the risk factors for the development of hepatocellular carcinoma (HCC). We investigated the activated metabolic pathway in HCC to identify its role in HCC growth and mortality. Methods: Gene expression profiles of HCC tissues and non-cancerous liver tissues were obtained by serial analysis of gene expression. Pathway analysis was performed to characterize the metabolic pathway activated in HCC. Suppression of the activated pathway by RNA interference was used to evaluate its role in HCC in vitro. Relation of the pathway activation and prognosis was statistically examined. Results: A total of 289 transcripts were up- or down-regulated in HCC compared with non-cancerous liver (P < 0.005). Pathway analysis revealed that the lipogenic pathway regulated by sterol regulatory element binding factor 1 (SREBFI) was activated in HCC, which was validated by real-time RT-PCR. Suppression of SREBFI induced growth arrest and apoptosis whereas overexpression of SREBFI enhanced cell proliferation in human HCC cell lines. SREBFI protein expression was evaluated in 54 HCC samples by immunohistochemistry, and Kaplan-Meier survival analysis indicated that SREBFI-high HCC correlated with high mortality. Conclusions: The lipogenic pathway is activated in a subset of HCC and contributes to cell proliferation and prognosis. © 2008 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. Keywords: Hepatocellular carcinoma; Serial analysis of gene expression; Lipogenesis; Gene expression profiling; Sterol regvulatory element binding factor 1 Received 26 May 2008; received in revised form 1 July 2008; accepted 23 July 2008; available online 12 October 2008 Associate Editor: J.M. Llovet Abbreviations: HCC, hepatocellular carcinoma; SREBF1, sterol regulatory element binding factor 1; HBV, hepatitis B virus; HCV, hepatitis C virus; SAGE, serial analysis of gene expression; RT-PCR, reverse transcription-polymerase chain reaction; IHC, immunohistochemistry; FADS1, fatty acid desaturase 1; SCD, stearoyl CoA desaturase; FASN, fatty acid synthase; si-RNA, short interfering-RNA; CLD, chronic liver disease; PCNA, proliferating cell nuclear antigen; IGF, insulin-like growth factor. #### 1. Introduction Hepatocellular carcinoma (HCC) is one of the most frequently occurring malignancies in the world [1]. The major risk factors associated with HCC include chronic infection with hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol abuse, and exposure to aflatoxin B1 [2]. HCC usually develops from liver cirrhosis, which involves continuous inflammation and hepatocyte regeneration, suggesting that reactive oxygen species and DNA damage are involved in the process of hepatocarcinogenesis [3]. The development of gene expression profiling technologies including DNA microarrays and serial analysis ¹Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-Machi, Kanazawa 920-8641, Japan ²Department of Advanced Medical Technology, Kanazawa University School of Health Sciences, 13-1 Takara-Machi, Kanazawa 920-8641, Japan ³Pathology Section, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa 920-8641, Japan ⁴Department of Gastroenterologic Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-Machi, Kanazawa 920-8641, Japan ^{*} The authors who have taken part in the research of this paper declared that they do not have a relationship with the manufacturers of the materials involved either in the past or present and they did not receive funding from the manufacturers to carry out their research. ^{*} Corresponding author. Tel.: +81 76 265 2231; fax: +81 76 234 4250. E-mail address: skaneko@m-kanazawa.jp (S. Kaneko). of gene expression (SAGE) have enhanced our ability to identify inventory transcripts and global genetic alterations in HCC [4–10]. In general, these methods have demonstrated that transcripts associated with cell growth are up-regulated, whereas those related to inhibition of cell growth are down-regulated, in HCC [11]. It is difficult, however, to decipher molecular pathways activated during hepatocarcinogenesis. Epidemiological studies suggest that metabolic dysregulation in the liver increases the risk of HCC development. For example, diabetes is associated with a 2-fold increase in the risk of HCC [12]. Obesity and hepatic steatosis also increase the risk of HCC [13–15]. Furthermore, recent studies indicate that HCV infection provokes hepatic steatosis, which may be a vulnerable factor for liver inflammation and HCC development [16,17]. Thus, dysregulation of a metabolic pathway may play a crucial role to promote HCC growth, but the molecular mechanism is still obscure. In this study, we have utilized SAGE [18,19], which enables us to monitor the differential expression of all genes, to determine the global changes in gene expression that occur during hepatocarcinogenesis. #### 2. Materials and methods #### 2.1. Tissue samples All HCC tissues, adjacent non-cancerous liver tissues, and normal liver tissues were obtained from 69 patients who underwent hepatectomy from 1997 to 2005 in Kanazawa University Hospital. Normal liver tissue samples were obtained from patients undergoing surgical resection of the liver for treatment of metastatic colon cancer. HCC and surrounding non-cancerous liver samples were obtained from patients undergoing surgical resection of the liver for the treatment of HCC. The samples used for SAGE, real-time reverse-transcription (RT)-PCR analysis, and immunohistochemistry (IHC) are listed in Supplemental Table 1. All samples used for SAGE and real-time RT-PCR analysis were snap-frozen in liquid nitrogen. Four normal liver tissues and 20 HCCs and their corresponding non-cancerous liver tissues were used for real-time RT-PCR analysis; seven of these HCC samples, along with 47 additional HCC samples, were formalin-fixed paraffin-embedded and used for IHC. HCC and adjacent non-cancerous liver were histologically characterized as described [20]. All strategies used for gene expression analysis as well as tissue acquisition processes were approved by the Ethics Committee and the Institutional Review Board of Kanazawa University Hospital. All procedures and risks were explained verbally, and each patient provided written informed consent. #### 2.2. SAGE Total RNA was purified from each homogenized tissue sample using a ToTally RNA extraction kit (Ambion, Inc., Austin, TX), and polyadenylated RNA was isolated using a MicroPoly (A) Pure kit (Ambion). A total of 2.5 µg mRNA per sample was analyzed by SAGE [18]. SAGE libraries were randomly sequenced at the Genomic Research Center (Shimadzu-Biotechnology, Kyoto, Japan), and the sequence files were analyzed with SAGE 2000 software. The size of each SAGE library was normalized to 300,000 transcripts per library, and the abundance of transcripts was compared by SAGE 2000 soft- ware. Monte Carlo simulation was used to select genes with significant differences in expression between two libraries without multiple hypothesis testing correction (P < 0.005) [21]. Each SAGE tag was annotated using a gene-mapping web site (http://www.ncbi.nlm.nih.-gov/SAGE/index.cgi). #### 2.3. Analysis of signaling networks Ingenuity Pathways Analysis software (Ingenuity® Systems, www.ingenuity.com) was used to investigate the molecular pathways activated in an HCC SAGE library compared with an adjacent non-cancerous liver SAGE library. All reliable transcripts statistically up-regulated in HCC were investigated and annotated with biological processes, protein-protein interactions, and gene regulatory networks, using a reference-based data file with statistical significance. All identified pathways were screened individually. MetaCoreTM software (GeneGo Inc., St. Joseph, MI) was used to evaluate candidate transcription factors responsible for up-regulation of transcripts in HCC. #### 2.4. RT-PCR A 1-μg aliquot of each total RNA was reverse-transcribed using SuperScript II reverse-transcriptase (Invitrogen, Carlsbad, CA). Real-time RT-PCR analysis was performed using ABI PRISM 7900 Sequence Detection System (Applied Biosystems, Foster City, CA). Using the standard curve method, quantitative **PCR** was performed in triplicate for each sample-primer set. Each sample was normalized relative to β-actin. The assay IDs used were Hs00231674_ml for sterol regulatory element binding factor 1 (SREBF1); Hs00203685_ml for fatty acid desaturase 1 (FADS1); Hs00748952_sl for stearoyl CoA desaturase (SCD); Hs00188012_ml for fatty acid synthase (FASN); and Hs99999_ml for β-actin. SREBF1a and SREBF1c mRNA levels were assayed by semi-quantitative RT-PCR [22]. #### 2.5. RNA Interference targeting SREBF1 Si-RNAs targeting *SREBF1* were constructed using a *Silencer*TM SiRNA Construction kit (Ambion) according to the manufacturer's protocol. We constructed two different si-RNAs, targeting different sites of *SREBF1* (*SREBF1*-1; CAGTGGCACTGACTCTTCC, *SREBF1*-2; TCTACGACCAGTGGGACTG). Control si-RNA duplexes targeting scramble sequences were also synthesized (Dharmacon Research, Inc., Lafayette, CO). Lipofectamine 2000TM reagent (Invitrogen) was used for transfection according to the manufacturer's instructions. ### 2.6. Cell proliferation assay Cell proliferation assays were performed using a Cell Titer96 Aqueous kit (Promega, Madison, WI). Results are expressed as the mean optical density (OD) of each five-well set. All experiments were repeated at least twice. #### 2.7. Soft agar assay To each well of a six-well plate, containing a base layer of 0.72% agar in growth medium, was added 1×10^4 cells, suspended in 2 ml of 0.36% agar with growth medium (DMEM supplemented with 10% FBS), and the plates were incubated at 37 °C in a 5% CO₂ incubator for 2 weeks. The numbers of colonies in each well were counted as previously described [23]. #### 2.8. TUNEL assay A DeadEndTM Colorimetric TUNEL System (Promega) was used to measure nuclear DNA fragmentation as described previously [724] ## Download English Version: # https://daneshyari.com/en/article/6108836 Download Persian Version: https://daneshyari.com/article/6108836 <u>Daneshyari.com</u>