FISEVIER Contents lists available at ScienceDirect ## Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat # Graphene oxide embedded into TiO₂ nanofiber: Effective hybrid photocatalyst for solar conversion Hyoung-il Kim^a, Soonhyun Kim^b, Jin-Kyu Kang^c, Wonyong Choi^{a,*} - ^a School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea - ^b Division of Nano & Bio Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 704-230, Republic of Korea - ^c Advanced Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 704-230, Republic of Korea #### ARTICLE INFO Article history: Received 24 May 2013 Revised 25 July 2013 Accepted 22 August 2013 Available online 2 October 2013 Keywords: Graphene oxide TiO₂ nanofiber Photo(electro)chemical activity Nanocomposite photocatalyst #### ABSTRACT One-dimensional TiO2 nanofibers (NFs) in which graphene oxide (GO) sheets were incorporated (GO-TiO₂ NFs) were prepared by using a sol-gel method and an electro-spinning technique. Unlike typical graphene/TiO2 composites that have TiO2 nanoparticles loaded on graphene/GO sheets, GO in GO-TiO₂ NF is embedded within the matrix of TiO₂ NF that consists of closely packed TiO₂ nanoparticles. GO-TiO2 NF was characterized by various analytical methods and tested for its photocatalytic and photoelectrochemical activities. The inclusion of GO sheets in TiO₂ NF improved the photocatalytic and photoelectrochemical activities: the photocatalytic hydrogen production and photocurrent generation increased by 1.7 and 8.5 times, respectively. GO sheets embedded in TiO₂ NFs can improve the interparticle connection and facilitate the charge pair separation by serving as an in-built electron collector and conduit. Therefore, the enhanced photo(electro)chemical activities in the presence of embedded GOs are related to the retarded charge recombination rate and the lower charge transfer resistance. The advantages of GO-TiO2 NF were confirmed by comparing with a different composite of GO/TiO2 NF having GO sheets bound to the external surface of TiO₂ NF (GO(s)-TiO₂ NF). The photocatalytic hydrogen production with GO-TiO₂ NF was higher than GO(s)-TiO₂ NF both in the absence and presence of Pt cocatalyst, which is mainly ascribed to the stronger electronic coupling between GO sheets and TiO2 matrix and the reduced light shielding by GO buried inside of TiO2 NF. Whether GO sheets are present within the NF matrix or on the external surface of NF critically influences the photocatalytic activity. © 2013 Elsevier Inc. All rights reserved. #### 1. Introduction TiO₂ is one of the most popular and successful photocatalysts employed in many application fields because it is abundant, is stable in acidic and alkaline aqueous solution, and has strong photo-oxidation power [1-4]. However, some critical drawbacks of TiO₂ limit its practical performance. The large bandgap of TiO₂ (\sim 3 eV) restricts the active working range below λ < 400 nm, and therefore, TiO₂ can be activated by UV light only which accounts for less than 5% of the total solar energy [5]. The poor electron-hole separation efficiency is another critical drawback that is responsible for the low photocatalytic activity [6]. To overcome these problems, various strategies have been employed such as doping with metallic or non-metallic elements [7,8], hybridization with carbon materials [9-12], and making unique geometry [13-15]. In particular, semiconductors with one-dimensional (1-D) structures such as nanowires, nanotubes, and nanorods have attracted much interest because of their unique properties compared to bulk materials. 1-D structures of TiO_2 have been applied to water-splitting, environmental remediation, self-cleaning, and electrical devices [16–18]. The most outstanding property of 1-D structural TiO_2 is that the short diffusion length to the surface region enhances the charge separation efficiency with reducing the chance of carrier recombination [19,20]. Such property should enhance the photocatalytic reactions occurring on 1-D structural TiO_2 . For example, in photocatalytic and photoelectrochemical water-splitting that requires the multi-electron transfer, the efficient charge separation on 1-D structures is extremely important [21,22]. The low photocatalytic efficiency of TiO_2 can be often enhanced by the hybridization with other components such as carbon nanomaterials [23,24]. Especially, the hybridization with graphene has received wide attention as an effective method to increase the adsorption of substrates and the charge separation efficiency [25–28]. When graphene is combined with TiO_2 , the photogenerated electrons in TiO_2 can easily transfer from the conduction band to graphene because the two dimensional π -conjugated structure of graphene sheet serves as a good reservoir of electrons. As a result, the composite of TiO_2 /graphene effectively suppresses the charge carrier recombination [29,30]. However, in spite of unique ^{*} Corresponding author. Fax: +82 54 279 8299. E-mail address: wchoi@postech.edu (W. Choi). properties of graphene-TiO₂ hybrids, the photocatalytic efficiency was not superior to bare TiO₂ in some studies [11,31]. One of the most critical parameters that affect the photocatalytic properties of TiO₂/graphene composite is the interfacial contact between the graphene sheet and TiO₂ nanoparticles. Most TiO₂/graphene composites employed µm-sized sheets of graphene on which TiO2 nanoparticles were loaded, but this geometry suffers from the low contact area between graphene and TiO₂. The binding force between TiO₂ and graphene being mostly electrostatic with this structural geometry, and most TiO2 nanoparticles are detached from graphene sheets at pH higher than the point of zero charge (PZC) of TiO_2 (pH_{pzc} \approx 6) [32]. To enhance the interfacial contact area, we recently introduced a self-assembled core/shell structure that consists of TiO₂ nanoparticles (core) coated with thin layers of graphene (shell) to demonstrate high photocatalytic and photoelectrochemical activity [11]. However, the graphene layers surrounding TiO₂ particles at higher graphene loading can interfere with the light absorption by TiO₂ and block the active surface sites, which may reduce photocatalytic efficiency [11,33,34]. Here, we report a new hybrid geometry that has graphene oxide (GO) sheets embedded into the matrix of TiO_2 nanofiber (NF) for higher photocatalytic and photoelectrochemical activity. Scheme 1 compares the various structures of the composite consisting of TiO_2 and graphene sheets: (a and b) structures were previously studied as mentioned above and (c and d) structures studied in this work. TiO_2 NF which consists of densely packed TiO_2 nanoparticles facilitates the interparticle charge transfer/ separation within the NF matrix [35]. The incorporation of GO sheets into the matrix of TiO_2 NF improves the interparticle connection among densely packed TiO_2 nanoparticles and further facilitates the electron–hole pair separation by serving as an *inbuilt* electron collector and conduit. The characterization and the enhanced photo(electro)catalytic behaviors of the GO-incorporated TiO₂ NF structure are investigated and discussed to test the role of this new geometry as an efficient solar photocatalytic material. #### 2. Experimental #### 2.1. Preparation of graphene oxide (GO) Graphene oxide was prepared by following the modified Hummers method [36]. Three gram of graphite (SP-1 grade 200 mesh, Bay carbon Inc.) was added into a mixture of concentrated H₂SO₄ (150 mL) and NaNO₃ (1.5 g) with vigorous stirring. After 1 h, 9 g of KMnO₄ was added slowly into the mixture solution and the temperature increased to 35 °C under stirring for 7 h. Additional 9 g of KMnO₄ was added, and the stirring continued for 12 h at the constant temperature of 35 °C. The obtained mixture was cooled down to room temperature and poured into 500 mL of H₂O₂ solution (490 mL of water + 10 mL of 30 wt% H_2O_2) in an ice bath. The diluted mixture was filtered and washed 3 times with 200 mL of 1 M HCl. The obtained solid product was redispersed in water and dialyzed for 2 weeks with dialysis membrane (Spectra/Por, MWCO: 6-8000) to remove remaining acids and reactants. The dialyzed mixture was centrifuged (12,000 rpm for 1 h), and the supernatant was removed. The obtained graphite oxide was redispersed in water or DMF and was ultrasonicated (IAC 4020, 400 W, Sonic) for 30-120 min in order to obtain exfoliated graphene oxide. **Scheme 1.** Illustration of the various composite structures of TiO_2 and graphene sheets and the associated charge transfers for hydrogen production: (a) TiO_2 nanoparticles loaded on graphene sheet, (b) graphene layers covering TiO_2 nanoparticles, (c) graphene sheets coupled with the external surface of TiO_2 nanofibers, and (d) graphene sheets embedded into the matrix of TiO_2 nanofibers. ### Download English Version: # https://daneshyari.com/en/article/61095 Download Persian Version: https://daneshyari.com/article/61095 <u>Daneshyari.com</u>