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The interface rise for the flow in a capillary with a nonuniform cross section distribution along a straight
center axis is investigated analytically in this paper. Starting from the Navier–Stokes equations, we derive
a model equation for the time-dependent rise of the capillary interface by using an approximated three-
dimensional flow velocity profiles. The derived nonlinear, second-order differential equation can be solved
numerically using the Runge–Kutta method. The nonuniformity effect is included in the inertial and
viscous terms of the proposed model. The present model is validated by comparing the solutions for a
circular cylindrical tube, rectangular cylindrical microchannels, and convergent–divergent and divergent–
convergent capillaries. The validated model has been applied to capillaries with parabolic varying wall,
sinusoidal wall, and divergent sinusoidal wall. The inertial and viscous effects on the dynamic capillary
rise and the equilibrium height are investigated in detail.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The dynamic capillary phenomena are of considerable impor-
tance for a variety of fields and applications, such as flip-chip
encapsulation [1–3], microfluidics [4,5], flows in soil [6] and other
porous media [7,8]. The first theoretical work on the dynamic cap-
illary rise can be traced back to 1921 when Washburn [9] con-
ducted a theoretical investigation on the penetration of liquids into
circular cylindrical capillaries and porous bodies. The study consid-
ered the effects of the capillary force and the viscous drag, while
the gravity and other effects were neglected. Washburn [9] con-
cluded that the distance traveled by the meniscus was proportional
to the square root of a nondimensional time. The pioneering work
of Washburn inspired many theoretical, computational, and exper-
imental studies. Brittin [10] modified the Washburn equation to
include the inertial force and the gravitational force by assuming
that: (a) the forces acting on the liquid in the steady state are
the same as those in the transient state; (b) the contact angle is
constant; (c) the wetting of the tube is not a rate-determining fac-
tor of the liquid motion. The modified Washburn equation [10] is a
second-order, nonlinear differential equation, the solution of which
can be obtained in the form of a double Dirichlet series. Xiao et al.
[11] derived a general formulation by incorporating the early work
of Dreyer et al. [12] on the entrance pressure loss effects and New-
man’s dynamic contact angle model [13].
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In addition to the symmetric and uniform cross-sectional ge-
ometries used in many studies, some cited above, similar ap-
proaches have also been extended to consider irregular geometries.
Mason and Morrow [14] investigated the meniscus curvature in
cylindrical capillaries with triangular cross section. In a later work,
Mason and Morrow [15] examined the effects of the pore shape in
porous media and the contact angle on the capillary displacement
curvatures in pore throats formed by the surfaces of equal spheres.

The dynamic capillary rise in cylindrical capillaries with irreg-
ular cross sections has also been studied. For example, Turian and
Kessler [16] analyzed the one-dimensional axial capillary-driven
flow in uniform capillaries with general noncircular cross section
subjecting to quadrant symmetry constraints. Ichikawa et al. [17]
extended the analysis for circular cylindrical tubes to rectangular
microchannels. Experimentally, Jong et al. [18] reported results of
capillary flow in rectangular microchannels.

To study the physical process of the capillary flow motion in
porous media, theoretical analyses have also been developed for
the capillary flow in tubes where the cross-sectional shape varies
along the tube axis. Sharma and Ross [19] derived an equation
to describe the kinetics of liquid penetration into sinusoidally
constricted capillaries by neglecting the inertial and gravitational
terms. Staples and Shaffer [20] proposed a similar sinusoidal model
including the gravitational term. Debdutt et al. [7,8] studied the
flow kinetics in porous ceramics by using a sinusoidal capillary
wall to approximate the real flow path in a porous medium. Er-
ickson et al. [21] studied the capillary-driven flow in convergent–
divergent and divergent–convergent capillary tubes by using finite
element numerical simulations. Young [22] derived a nonuniform
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capillary model similar to that of Sharma and Ross [19] and Staples
and Shaffer [20]. Young [22] applied the model to the no-gravity
capillary flows in Erickson et al. [21] by reducing the convergent
and divergent transition sections to step changes.

The models for capillaries of axially varying cross-sectional
shapes in Refs. [7,8,19,20,22] considered the nonuniform geome-
try effect on the viscous terms in the cross-sectional plane. But
the likely variation of the axial velocity component in the main
stream direction has not been accounted for in the viscous terms.
The inertial effects were also ignored in the models. There are in-
dustrial applications of capillary flow in complex porous media
where the axial flow variation and the inertial effects can be im-
portant. For instance, the rigid-capillary-pressing (RCP) technology
is used to improve the dewatering efficiency in the paper-making
process [25]. The paper industry is one of the major industrial en-
ergy users and a large proportion of this energy is used to dry the
wet paper web. Large mechanical presses are used for many pa-
per grades to reduce the water content from approximately 3 kg
water/kg fiber to about 1.5 kg water/kg fiber with thermal energy
being used to further reduce the water content to about 0.05 kg
water/kg fiber. In addition, there are many grades of paper, such as
bath and facial tissue, which cannot be mechanically pressed to de-
water the sheet in order to maintain end-use properties. For these
grades, virtually 100% of the water (approximately 3 kg water/kg
fiber) is currently removed via evaporation. Removal of some of
this water via capillary action has the potential to substantially
decrease the thermal energy use needed for drying these grades.
Experiments have shown that capillary dewatering using the lay-
ered, porous structures can remove approximately 0.5 to 0.7 kg
water/kg fiber, which results in 16–20% thermal energy savings.
During this dewatering process, the capillary flow passes through
a thin porous medium with large change in pore sizes. The porous
medium is composed of layers of lamina of pore sizes ranging pos-
sibly from 10 μm to 1000 μm. A more physically realistic modeling
of the capillary rise will help advance the understanding of the
various fluid dynamic mechanisms at work in such devices.

In this paper, the capillary flow in nonuniform cross-sectional
capillaries is investigated analytically. The analysis starts from the
Navier–Stokes equations and a governing equation is derived by
the integration of the axial momentum equation over the liquid
volume. The analysis has been developed by assuming a parabolic
distribution for the velocity component in the primary flow di-
rection and has considered the secondary flow components based
on mass conservation. Compared to the classic Lucas–Washburn
equation [9–11] and the existing nonuniform capillary model equa-
tions [7,8,19,20,22], the proposed model incorporates the inertial
terms and the viscous terms for nonuniform geometries. The de-
rived nonlinear, second-order differential equation is complex and
a MatLab code has been developed to solve the equation numer-
ically by using the adaptive Runge–Kutta–Fehlberg method [23].
The present model is first validated by comparing with the so-
lutions of the existing model equations for the circular cylin-
drical tubes, rectangular cylindrical microchannels [17,18], and
convergent–divergent (C–D) and divergent–convergent (D–C) capil-
laries [21]. The proposed model is then applied to capillaries with
parabolic varying wall, simple sinusoidal wall, and divergent sinu-
soidal wall. The nonuniform geometry effects are investigated in
detail. The simulation results, especially those for capillaries with
large variations of cross section, show that there are significant ef-
fects of nonuniform geometry in the cases studied.

2. Model equation

The proposed model equation is first derived in Section 2.1. In
Section 2.2, we discuss the characters of the model equation.

Fig. 1. Sketch of a nonuniform tube with elliptical cross section.

2.1. Derivation

For Newtonian, incompressible fluid flows of constant viscosity,
the Navier–Stokes equations can be written in the Cartesian coor-
dinates (x, y, z) as,
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where vx , v y , and vz are velocity components in x, y, and z di-
rections, respectively. t , ρ , p, and μ denote time, density, pressure,
and viscosity, respectively.

The surface tension driven liquid flows in tubes with nonuni-
form cross section distribution along the axis of the tube are con-
sidered. Fig. 1 shows a sketch of such capillary tubes. Elliptic cross
section is assumed and the perimeter of the cross section is gov-
erned by:

x2 + K y2 = R2(z) (5)

where R denotes the semi-major axis that varies along the z di-
rection. K denotes the square of the ratio of the semi-major axis
to the semi-minor axis. The elliptical cross section allows for the
modeling of tubes with cross section ranging from circular to near
rectangular. In this analysis, the length scale of the local axial vari-
ation of the cross-sectional dimension is assumed small compared
with the length of the capillary considered, which is valid for most
engineering applications.

Due to the small Reynolds number, the capillary flows are lam-
inar in nature and a parabolic profile is assumed for the axial
velocity component vz . That is,
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