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Effect of non-homogeneous surface viscosity
on the Marangoni migration of a droplet in viscous fluid
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Abstract

Marangoni migration of a single droplet in an unbounded viscous fluid under the additional effect of variable surface viscosity is studied. The
surface tension and the surface viscosity depend on concentration of dissolved species. Cases of the motion induced by the presence of a point
source and by a given constant concentration gradient are considered. The dependence of the migration velocity on the governing parameters is
computed under quasi-stationary approximation. The effect of weak advective transport is studied making use of singular perturbations in the
Peclet number, Pe. It is shown that, when the source is time dependent a Basset-type history term appears in the expansion of the concentration
and, as a result, the leading order correction to the flow and to the migration velocity is of O(Pe1/2). If the source of active substance driving the
flow is steady, the effect of convective transport on the migration is weaker.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The dynamics of drops and bubbles and their interaction is
an important issue in many multiphase systems that involve si-
multaneous flow and mass transport. Analyses of such systems
provide also methods for simulations of the dynamics of small
biological bodies such as cells and intracellular particles. Sur-
factants adsorbed on an interface give rise to interfacial stresses,
which may be of the form of surface tension gradients (the
Marangoni effect) or those relating to the interfacial viscosi-
ties. These stresses may considerably influence the motion of
drops in an immiscible medium, especially in the cases when
the surface forces prevail over body ones (low gravity, small or
nearly neutrally buoyant drops) [1].

The phenomenon of surface viscosity was suggested by
Plateau, and used by Boussinesq to explain an anomaly that
was observed in bubbles velocity. The discussed anomaly was
the change of the characteristic velocity of a bubble in a vis-
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cous liquid with its size. It is known that the terminal settling
velocity of relatively small bubbles and drops is close to that of
a solid sphere (Stokes formula). On the other hand, larger bub-
bles and drops behave normally, in accordance with Hadmard
and Rybczynski formula. The transition domain between these
two types of behavior for bubbles and drops occurs in a rela-
tively small interval of size (O (1 mm)). Boussinesq suggested
that this “solidification” is due to the interfacial viscosity, which
has strong influence with the reduction of bubble’s size. Later
on, Frumkin and Levich [2] suggested another explanation of
the phenomenon based solely on the effect of surface tension
gradient over the interface (Marangoni effect). Though it failed
to account for all the changes in the characteristic velocities of
bubbles, surface viscosity was found later on to be an existing
and measurable quantity.

Marangoni migration of drops in a viscous medium is a sub-
ject of numerous analytical and experimental studies, while the
effect of interfacial surface viscosity has attracted substantially
less attention so far. However, in situations where a surfac-
tant concentration at the interface is sufficiently large, or when
the interface is composed of large molecules, the surface vis-
cosity is not negligible and, therefore, must be accounted for.
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Moreover, the dependence of the surface viscosity on the con-
centration of surfactants may be extremely strong (see e.g. [3]
and [4]).

Scriven [5] formulated the expressions for Boussinesq’s sur-
face viscosity and the expression for surface tension, γ , in a
tensorial form and embedded them in a general surface stress
balance. The interface is considered as a special 2-dimensional
medium possessing its own specific energy and momentum.
This medium is compressible even when both bulk phases are
incompressible, hence, the surface viscosity has two indepen-
dent contributions: Shear surface viscosity, ε, and dilatational
surface viscosity, k [1,5,6]. Scriven’s formula allowed mea-
surements of surface viscosity and the development of contin-
uum models for the effect of surface viscosity on the motion
of bubbles and drops. The difficulty in measuring shear sur-
face viscosity is relatively small. Thus, one decade after the
appearance of Scriven’s work, large amount of data related
to shear surface viscosity magnitude and its dependence on
various factors was published [3]. Dilatational surface viscos-
ity is a different issue. Only in recent years suitable methods
that eliminate the influence of other factors on the measure-
ment were developed. Among the reports on measurements that
were published are Stubenrauch and Miller [7], Koelsch and
Motschmann [8], Wantke and Fruhner [9], Kostoglou and Kara-
pantsios [10], Wang and Narsimhan [11] and others.

Agrawal and Wasan [12] presented a theoretical study of the
creeping motion of a bubble under the combined effect of sur-
face viscosity, surface tension and gravity. Effects of surface
viscosity were added to earlier models and the final results of
bubbles motion were compared. LeVan [13] and Holbrook and
LeVan [14,15] solved the general problem that includes the ef-
fects of surface viscosity, surface tension and gravity on the
motion of drop. Balasubramaniam and Subramanian [16] ex-
tended the analysis of LeVan to include convective transport of
momentum and calculated the small deformations of the drop
from the sphere.

The assumption of a constant surface viscosity was used in
the earlier mentioned models and in measurements of surface
viscosity. This assumption was made in order to achieve sim-
plified analytical models. However, these simplifying assump-
tions were suspected to cause inaccurate predictions in analyt-
ical models in many physical systems [14]. Surface viscosity
depends on many factors including surfactants concentrations,
additives as ionic materials that change surfactants configura-
tion, temperature, flow, fluids species and others [4]. Holbrook
and LeVan [14] argued that due to the strong dependence of
surface viscosity on these factors, the assumption of a constant
surface viscosity would be reasonable only in very specific sys-
tems while it will cause some magnitude of error in models for
most real systems. In addition, the use of constant surface vis-
cosity is suspected to be the cause for many of the difficulties
in dilatational surface viscosity measurements [17].

In the present work, the effect of variable surface viscos-
ity on the Marangoni migration of a drop is investigated for
isothermal conditions, where surface viscosity and surface ten-
sion depend solely on the concentration of a soluble surfactant.
The interfacial surfactant transport is assumed to be diffusion-

controlled, i.e. the interfacial concentration is taken to be pro-
portional to the bulk concentration in the vicinity of the inter-
face. Two kinds of concentration field are considered, the first
results from a constant gradient far from the drop and the sec-
ond is induced by a point source. The first type of the field
is commonly used in the general problem of the Marangoni
migration of drops and bubbles. For small drops, and in the
absence of singularities, linear distribution provides a good
approximation to an arbitrary one in the vicinity of the fluid
particle. Nevertheless, in some applications a non-linear distrib-
ution may be important. For example distributions that result in
spontaneous interactions of drops induced by interfacial mass
transfer [18], or in biological applications, for which produc-
tion of active substances is typical, e.g. Lavrenteva et al. [19]
who considered a model of the locomotion of a drop induced
by an internal point source of a surfactant. This highly sim-
plified model ignored all the properties of the interface except
surface tension. One of the goals of this paper is to extend these
results to the case of a more involved rheology of the interface,
which includes surface viscosity.

In Section 2, basic assumptions of the model are briefly dis-
cussed. Governing equations and boundary conditions are for-
mulated. Most of the computations are performed making use
of the quasi-stationary approximation described in Section 3,
where the method of solution and results of calculations are
discussed as well. In Section 4 we take into account a weak
convection and include non-stationary effects by using the sin-
gular perturbation method of matched asymptotic expansions in
the Peclet number, Pe. It is shown that a time-dependent point
source gives rise to a correction of order O(Pe1/2).

2. Statement of the problem

Consider a Newtonian viscous drop of radius a, submerged
in an unbounded immiscible Newtonian viscous fluid, which is
quiescent far from the drop. Around the drop there is a field of
surfactants concentration c. It is supposed that the surfactants
are weak or diluted so that their presence does not affect any
physical property in the system other than the interfacial tension
and the surface viscosity. Two kinds of surfactants distributions
are considered. In case ‘a,’ a constant gradient of surfactants is
assumed far from the drop. In case ‘b,’ a point source of surfac-
tants is located in the vicinity of the drop surface. The intensity
of the source may be time dependent, Q = Q(t).

Values of variables and properties inside the drop are marked
with the superscript (1). The superscript (2) is used for variables
and properties outside the drop. Unmarked values are general.
The following scaling is chosen: The radius of the drop, a,
for the length, the characteristic change of the bulk mass con-
centration along the interface is ĉ = |a∇c∞| for the case of
constant gradient and ĉ = Q∗

D(2)a
for the case of a point source

with a characteristic strength Q∗. Since the flow is induced
solely by the surface tension gradients, we chose Marangoni
velocity, |�γ |

μ(2) , for scaling of the velocity, |�γ |
a

for the pres-

sure or stress, and μ(2)a
|�γ | for time, with �γ being a character-

istic drop of surface tension along the interface and μ denoting
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