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The effects of Au particle size and support properties have been examined in the gas-phase hydrogena-
tion of 4-nitrobenzaldehyde over Au/ZrO,, Au/TiO, and Au/Al;03. Gold particle size was varied using
deposition-precipitation and impregnation syntheses. The catalysts have been characterised in terms
of BET area/pore volume, temperature-programmed reduction (TPR), XRD, H, chemisorption/TPD, TEM,
XPS, and pyridine adsorption FTIR measurements. Reaction exclusivity to 4-aminobenzaldehyde was
achieved over Au/ZrO, and Au/TiO, where a decrease in Au particle size (mean from 7.0 to 4.7 nm) gen-
erated a higher turnover frequency. Pyridine adsorption coupled with FTIR analysis has revealed stronger
Lewis acidity associated with Au/Al,;03, which contributes to C=0 reduction via the formation of a ben-
zoate intermediate. Selectivity to the alcohol is sensitive to Au size and reaction temperature with 100%
4-nitrobenzyl alcohol selectivity over Au/Al,03 (mean Au size = 7.8 nm) at 423-443 K. Our results dem-
onstrate the viability of controlling selective —NO, and C=0 reduction using oxide-supported Au
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catalysts.
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1. Introduction

Functionalised aromatic amines and alcohols are important
intermediates in the production of a range of pharmaceuticals,
agrochemicals, cosmetics, herbicides, dyes and polymers [1,2].
Amine and alcohol production can be achieved via the catalytic
hydrogenation of nitro compounds and aldehydes [3,4]. Selectivity
in the targeted reduction of —NO, or C=0 in the presence of other
reactive functional groups (e.g. C=N, C=C, COOH) remains chal-
lenging [5,6]. In this study, we examine the feasibility of control-
ling the selective hydrogenation of 4-nitrobenzaldehyde.
Reduction of —NO, is more facile than C=0 and the amine should
be the preferred product [7]. The possible pathways associated
with the conversion of 4-nitrobenzaldehyde are presented in
Fig. 1, where 4-aminobenzaldehyde (step (I)) and 4-nitrobenzyl
alcohol (step (II)) are commercially important compounds [8,9].
This reaction has been studied over soluble metal (Pd [10,11], Ru
[8] and Co [12]) complexes and solid transition metal (supported
Au, Ru, Ni, Pd and Pt [6,8,9,13-15] and PtO,-H,0 [16]) catalysts
in the liquid phase (P=1-50 bar, T =303-423 K). There has been
only one reported gas-phase application (for 3-nitrobenzaldehyde)
over MgO [17]. The reduction of both nitro and carbonyl functions
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generates 4-aminobenzyl alcohol (steps (III) and (IV)) as reported
for reaction over PtO,-H,O [16], sol-gel entrapped Pd [18], MgO
[17] and Ru/Al,03 [8]. Moreover, the formation of 4-nitrotoluene
can result from either direct attack of C=0 (step (V)) or further
conversion of 4-nitrobenzyl alcohol (step (VI)) and has been de-
tected in reactions over Au/Fe,03; and Fe(OH), [13]. Generation of
4-aminotoluene can proceed via steps (VII), (VIII) and (IX). It is
well established [6,9,11,16] that 4-aminobenzaldehyde and 4-ami-
nobenzyl alcohol polymerise during hydrogenation with the for-
mation of toxic azoxy compounds. The latter is favoured by the
longer contact times that apply in conventional batch processes
[11] and should be circumvented in continuous operation. Taking
an overview of the literature, 4-aminobenzaldehyde has been the
major product with selectivities up to 99% [6,9,10,12,13]. Preferen-
tial 4-nitrobenzyl alcohol formation has been demonstrated in
reactions involving Ru complex catalysts [8], but the precise source
of this selectivity or the means of controlling product distribution
remains unresolved.

Studies to date have focused on batch liquid-phase processes
where enhanced selectivity in homogeneous catalysis required an
alkali additive (KOH) [10,12] and operation under reflux conditions
[12]. A switch to heterogeneous catalysis offers advantages in terms
of product/catalyst separation while economies of scale favour con-
tinuous processes for high throughput. The use of Au catalysts has
shown promise in the liquid-phase conversion of 4-nitrobenzalde-
hyde to 4-aminobenzaldehyde although polymerisation was also
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Fig. 1. Possible reaction pathways in the hydrogenation of 4-nitrobenzaldehyde.

observed [6,9,14]. Supported Au has exhibited chemoselectivity in
—NO, reduction to —NH, in the presence of other reactive function-
alities, e.g. C=N[19], C=C [9], Br [20] and CI [21]. Bailie and Hutch-
ings [22] first demonstrated C=0 activation on Au/ZrO,, resulting in
enhanced selectivity to crotyl alcohol. This work has led to a num-
ber of investigations on the selective hydrogenation of C=0 to
C—OH [23-33] over Au, but none of these studies have considered
the conversion of nitrobenzaldehyde. Previous work has estab-
lished the importance of the support [26,34-36] and Au particle
size [21,37-39] in determining hydrogenation performance. Adopt-
ing Au/ZrO, as our starting point, we have examined the role of sup-
port (TiO, and Al,03) and Au size on 4-nitrobenzaldehyde
hydrogenation activity/selectivity with a consideration of reaction
temperature effects.

2. Experimental
2.1. Catalyst preparation and activation

The ZrO, support was prepared by precipitation of zirconium
(IV) oxychloride octahydrate (ZrOCl,-8H,0, >99.5%, Aldrich) with
aqueous ammonia (35% w/w NHs, Fisher). The ZrOCl, solution
(0.1 M) was added dropwise with vigorous stirring to aqueous
ammonia (2.5 M). Temporal pH changes were measured with a
crystal-body electrode coupled to a data logging and collection sys-
tem (Pico Technology), calibrated with standard buffer solutions
(pH 7 and 10). The resultant hydrogel was washed with distilled
water until the wash water was Cl-free (AgNOs test), dried at
373 K for 24 h and calcined in air (20 cm® min~' g~ ') at 1 Kmin!
to 673 K for 5 h. Gold (ca. 1% w/w) supported on ZrO,, TiO, (Degus-
sa) and Al,0O5 (Puralox) was prepared by deposition—precipitation
(DP) where a suspension (300 cm?) of HAuCl, (173 mg, 99.999%,
Aldrich), aqueous urea (100 cm?, 2.8 mol dm~3) and support (5 g)
was stirred (300 rpm) and heated (1 Kmin™!) to 353 K, which

was maintained for ca. 200 min. Synthesis was conducted in the
dark to avoid formation of metallic colloids in solution by photore-
duction of Au(Ill) [40]. As a high residual chloride content
(>300 ppm) results in the formation of larger (>20 nm) Au particles
[41] and can poison catalytic sites [42], the catalyst precursor was
washed repeatedly. Gold on Al,O3 prepared by DP is denoted by
AuAl;03-1. Alumina-supported Au was also prepared by standard
impregnation of Al,0; with an aqueous HAuCl, solution (Aldrich,
7.3 x 1073 M, 39 cm®) where the slurry was heated at 2 Kmin™!
to 353 K and agitated (600 rpm) in a He purge; this sample is de-
noted by AuAl;03-2. The catalyst precursors were dried in He
(10cm® min~'g™') at 383K for 3 h and sieved into a batch of
75 um average diameter. The samples were stored at 277 K under
He in the dark in order to prevent Au agglomeration, which can oc-
cur when kept in air and in the light [43]. The precursors were acti-
vated in 60 cm® min~! H, at 2 Kmin~! to 473 K and passivated in
1% v/v Oz/He at ambient temperature for ex situ analysis.

2.2. Catalyst characterisation

The pH associated with the point of zero charge (pHpzc) of ZrO,
was determined by potentiometric mass titration [44]. Three dif-
ferent masses (0.025, 0.050 and 0.075g) were immersed in
50 cm® 0.1 M NaCl to which a known amount of NaOH (0.1 M)
had been added to adjust the pH to 11. After stabilisation of the
pH (ca. 1 h), titration with HCI (0.1 M) was performed under con-
tinuous agitation in He and temporal pH changes measured as de-
scribed above. Temperature-programmed reduction (TPR), BET
surface area, total pore volume, H, chemisorption and tempera-
ture-programmed desorption (TPD) were measured using the com-
mercial CHEM-BET 3000 (Quantachrome) unit. In TPR analysis,
samples (0.2 ¢g) were loaded into a U-shaped Quartz cell
(10 cm x 3.76 mm i.d.) and heated in 17 cm® min~' (Brooks mass
flow controlled) 5% v/v Hy/N, at 2Kmin~! to 473 +1K. The
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