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Deformation of a droplet in an electric field: Nonlinear transient response
in perfect and leaky dielectric media
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Abstract

Deformation of a fluid drop, suspended in a second immiscible fluid, under the influence of an imposed electric field is a widely studied
phenomenon. In this paper, the system is analyzed numerically to assess its dynamic behavior. The response of the system to a step change in the
electric field is simulated for both perfect and leaky dielectric systems, exploring the influence of the fluid, interfacial, and electrical properties on
the system dynamics. For the leaky dielectric case, the dynamic build up of the free charge at the interface, including the effects of convection along
the interface due to electrohydrodynamic circulation, is investigated. The departure of the system from linear perturbation theory is explained using
these dynamic simulations. The present simulations are compared with analytic solutions, as well as available experimental results, indicating that
the predictions from the model are reliable even at considerably large deformations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A fluid drop suspended in another immiscible fluid will de-
form when subjected to an electric field. Applications of this
phenomenon encompass spraying [1], aerosols, inkjet printing,
coalescence of droplets for de-emulsification purposes [2–4],
and electrowetting-based droplet manipulation in microfluidic
systems [5–7], to name a few. The problem of droplet deforma-
tion under the influence of an imposed electric field has been
extensively studied from different perspectives. The mathemat-
ical foundation of the subject has been rigorously established,
and several aspects of the equilibrium and transient behavior of
such systems have been explored.

Fig. 1 schematically depicts the fundamental parameters
governing the extent of droplet deformation under the influence
of an electric field. As noted in the figure, the key properties
dictating the nature and extent of deformation are the viscos-
ity, dielectric permittivity, and electric conductivity of the two
fluids. The interfacial tension is unique for a given fluid–fluid
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interface. The deformation of a drop in an electric field is char-
acterized by a balance of interfacial tension, hydrodynamic, and
electrical stresses at the droplet interface. The electrical stresses
cause the interface to distort, while interfacial tension tends to
restore the original shape. Viscous stresses and fluid pressure
gradients due to the flow fields can also alter the deformation
substantially. The mathematical description of this system re-
quires simultaneous solution of the fluid mechanical equations
and the equations of electrostatics.

The first analytic result predicting the deformation of a drop
in an electric field was derived by O’Konski and Thacher [8]
for perfectly insulating (dielectric) drops in perfectly insulat-
ing media. Subsequently, Allan and Mason [9] performed a
force balance over the surface of a dielectric drop in a dielec-
tric medium. Their result was equivalent to the O’Konski and
Thacher result. Using the notations of Fig. 1, the steady state
deformation, d , of the droplet predicted by the O’Konski and
Thacher/Allan and Mason (OTAM) expression is

(1)d∞ = R0εe|E0|2
γ

9(S − 1)2

16(S + 2)2
,

where |E0| is the magnitude of the electric field vector along
the z coordinate, and the parameter S (=εi/εe) represents the
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Fig. 1. Schematic representation of the deformation of a droplet suspended in
a second fluid in the presence of an electric field, E0, acting along the z axis
of the cylindrical coordinate system. The shaded circle represents the spherical
nondeformed droplet before application of the field. The possible steady-state
deformed shapes, prolate and oblate spheroids, are also depicted. The nonde-
formed droplet diameter is R0. For the deformed spheroidal shapes, the equato-
rial radius (a) and polar (b) semi-axis are directed along the r and z coordinates,
respectively. The relevant properties of the droplet and suspending medium are
the viscosity, μ, dielectric permittivity, ε, and conductivity, σ . The subscripts
i and e are used to represent the droplet and the suspending fluid, respectively.
The interfacial tension, γ , constitutes the restoring force.

ratio of dielectric permittivities of the droplet and the suspend-
ing medium. The deformation parameter, d , is defined as

(2)d = b − a

b + a
,

where a is the equatorial radius of the spheroid and b is the po-
lar half-axis. The symbol d∞ is used in Eq. (1), and in the rest of
the paper to indicate that the deformation is evaluated at steady
state. According to Eq. (1), the deformation must always be
positive, i.e., the resultant deformed shape is always a prolate
spheroid, elongated in the direction of the electric field. Al-
lan and Mason [9], however, observed discrepancies between
the predictions of Eq. (1) and their experiments on electrical
deformation of droplets. In some of their experiments oblate
deformation (compression in the axis of the applied field) was
observed, which was clearly beyond the scope of Eq. (1).

Taylor [10] and later Melcher and Taylor [11] developed an
electrohydrodynamic model for the deformation of conducting
droplets suspended in a conducting medium under the influence
of an imposed electric field. This model, generally referred to
as the “leaky dielectric model,” has become a cornerstone of
the theory of electrical drop deformation. The expression for
the steady-state deformation in this model is

d∞ = R0εe|E0|2
γ

9

16(2 + H)2

(3)×
[
H 2 + 1 − 2S + 3(H − S)

(
2 + 3M

5 + 5M

)]
,

where

S = εi

εe

, H = σi

σe

, M = μi

μe

.

Equation (3) successfully predicted the oblate deformations ob-
served in the experiments of Allan and Mason [9]. The leaky

dielectric model, however, suffers the limitation that it is in-
valid for perfect dielectric systems. This is immediately appar-
ent from Eq. (3), where setting σi = σe = 0 does not yield the
OTAM expression (Eq. (1)).

The leaky dielectric model has been elaborated upon in sev-
eral subsequent works, notably [12–17], which specifically fo-
cus on the transport modes of the free charge carriers (ions).
A comprehensive review of the theoretical developments in this
area was given by Saville [15]. Zholkovskij et al. [16] provided
a solution for the electrokinetic problem that resolved the dis-
parity between the OTAM and Taylor results in the limit of zero
conductivity. More recently, an extension of the Taylor model
was proposed [17].

All the above mentioned approaches pertain to steady-state
analysis of small deformations under the influence of small
electric fields. These results do not apply to the dynamic prob-
lem, and cannot address large deformations or breakup of
droplets. The transient electrohydrodynamic problem address-
ing the deformation of droplets is also an extensively studied
subject [18–24].

Since the theoretical treatments of drop deformation in an
electric field are limited to small deformations, or large de-
formations with assumptions placed on the shape, there has
been a significant and continuing interest in finding numeri-
cal solutions to these problems. The pioneering computational
studies on transient deformation of droplets appeared in the
early 1970s [25,26]. These studies deal with conducting drops
with constant surface potential, both isolated and in pairs, and
isolated charged drops. A finite perturbation technique was em-
ployed to converge to the correct force balance for this system,
yielding the steady-state result, which for relatively large de-
formations showed a small deviation from the spheroidal shape.
The irrotational, inviscid fluid mechanics equations were solved
to provide dynamic analyses of drop deformation and contact
between drop pairs.

Sherwood [13] analyzed the leaky dielectric model by means
of a boundary integral method. Viscosity was included in the
model, but the droplet and medium were assumed to be equally
viscous. The momentum term in the Navier–Stokes equations
was neglected. Large deformations were obtained by step-
wise increases in the applied field. Sherwood’s results indicate
that when the permittivity ratio εi/εe is sufficiently high, the
drop develops the pointed ends characteristic of tip streaming,
whereas a high conductivity ratio tends to produce a bulbous-
ended breakup mode. The steady-state perfect dielectric prob-
lem was also solved using Newton’s method with stepwise
changes in applied field [27].

Finite element analysis of the shape patterns and stability of
a charged drop in an electric field was conducted by Basaran
and Scriven [28,29]. Their steady-state analysis assumed infi-
nite drop conductivity, so that the final state did not involve
flow, and hence the fluid mechanics equations were not nec-
essary. Haywood et al. [30] developed a numerical technique
to predict the transient deformation of a perfect dielectric sys-
tem. Differences between the stability limits predicted from
steady-state analysis and from their fully dynamic model were
observed. Tsukada et al. [31] performed finite element cal-
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