

ScienceDirect

Primary immunoglobulin repertoire development: time and space matter

Alessandra Granato, Yuezhou Chen and Duane R Wesemann

The primary immunoglobulin repertoire develops via opposing forces of expanding diversification balanced by contracting selection mechanisms. The resulting shape is essential for host health and immune fitness. While the molecular mechanisms of Ig diversification have largely been defined, selection forces shaping emerging Ig repertoires are poorly understood. During lifetime, human and mouse early B cell development occurs at distinct locations — beginning in fetal liver before transferring to bone marrow and spleen by the end of gestation. During an early life window of time, the murine gut lamina propria harbors developing immature B cells in proximity to intestinal contents such as commensal microbes and dietary antigens. Location and timing of early B cell development may thus endow neighboring antigens with primary repertoire-shaping capabilities.

Address

Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA

Corresponding author: Wesemann, Duane R (dwesemann@research.bwh.harvard.edu)

Current Opinion in Immunology 2015, 33:126-131

This review comes from a themed issue on Lymphocyte development and activation

Edited by Sidonia Fagarasan and Jeroen P Roose

http://dx.doi.org/10.1016/j.coi.2015.02.011

0952-7915/© 2015 Elsevier Ltd. All rights reserved.

Introduction

Vertebrates have evolved sophisticated mechanisms to adaptively respond to virtually any potential infectious insult. A critical component of this adaptive immune system is the generation of an immunoglobulin (Ig) repertoire of great diversity, which can recognize a broad range of antigens. Primary Ig diversity in mice and humans occurs via V(D)J recombination in developing progenitor (pro-) and precursor (pre-) B cells by way of DNA recombination events that assemble variable (V), diversity (D), and joining (J) gene segments together to form variable region exons encoding a vast array of Ig specificities [1–3]. Most of the B cells expressing freshly assembled IgM are removed from the repertoire early in B

cell development through selection mechanisms [4–6]. Why certain Ig specificities remain and why others are removed from the primary repertoire is not fully understood.

Fetal liver and post-natal bone marrow (BM) are the two major sites of primary B cell development in mice and humans. Self-antigens present in these microenvironments influence immature B lymphocyte selection checkpoints by way of encounter with freshly expressed IgM on the B cell surface, thus restricting Ig repertoire-shaping influences at this stage of development to antigens present in primary lymphoid tissues [7–10]. In light of recent findings showing that early B cell development can also occur in the mouse gut lamina propria (LP) during weaning age [11**], early B cell developmental events together with concomitant selection processes — can be positioned in the context of self-antigens unique to the intestine and in proximity to gut luminal contents early in life. This suggests that factors such as where and when early B cell maturation can take place may be required to fully grasp how the primary Ig repertoire is processed and formed, as antigens available to effect early selection processes may differ substantially in time and space.

Overview of B cell development and primary Ig repertoire

The RAG1/RAG2 endonuclease initiates the V(D)J recombination reaction that assembles variable region exons from germline gene segments at both Ig heavy (IgH) and Ig light (IgL) chain loci to generate primary antibody repertoires [12]. Assembly of the IgH variable region exon occurs in pro-B cells followed by that of IgL in pre-B cells. Expression of IgH μ and IgL (κ or λ) chains generates IgM, which is expressed on immature B cells as the B cell receptor (BCR). RAG expression can continue in immature B cells [13], allowing continued IgL V(D)J recombination that replaces the initially assembled IgL exon with one that generates a new specificity [14–16]. Receptor editing, together with other selection processes such as deletion or induction of anergy [4,17], provide mechanisms whereby antigen-encounter at the immature and transitional B cell stages help shape pre-immune Ig repertoires.

The Ig repertoire can be divided into three subgroups — namely, *emerging*, *available* and *actual* repertoires [18]. The *emerging* repertoire consists of newly formed B cells in the primary lymphoid organs undergoing selection

processes before reaching the peripheral naïve mature B cell pool. The available repertoire constitutes the mature naïve follicular, marginal zone, or B-1 B cells populating the peripheral lymphoid organs and tissues (reviewed in Ref [19]). The *emerging* and *available* repertoires exist largely in the context of surface-bound Ig on immature and mature naïve B cells, while the actual repertoire contributes to the pool of soluble antibody and memory B cells. While V(D)I recombination is responsible for the primary Ig diversification from which the emerging, available and actual repertoires are derived, secondary Ig diversification processes contribute to the actual Ig repertoire. In this regard, mature naïve B cells can participate in further Ig diversification reactions including somatic hypermutation (SHM) and IgH class switch recombination (CSR), which are both dependent upon the enzyme activation induced cytidine deaminase (AID) [20]. In addition to specificities derived from post-GC cells, the actual repertoire contains innate-like natural antibodies secreted by B-1a B cells [21].

Primary Ig diversification generates an enormous number of possible Ig specificities, theoretically reaching beyond 10¹³ unique combinations in mouse and humans [22]. V(D)I recombination often results in the addition and deletion of nucleotides at the junctions between ligated gene segments and most of the diversity of the primary antibody repertoire is concentrated at the junctions where the V, D, and J segments join together (reviewed in Ref [23]). The terminal deoxytidylnucleotide transferase (TdT) adds non-templated nucleotides at random in the V(D)J junctions resulting in increased diversity [24]. The segment spanning the D segment and its two flanking junctional sequences encodes for the IgH complementarily determining region 3 (CDR-H3). Because of the combinatorial and non-templated nature of the mechanisms that generate the CDR-H3, it is the most diverse component of the preimmune Ig repertoire and is a principal determinant of antibody specificity [25,26].

Selection of emerging B cells and the role of antigen

Under physiological conditions, adult mice produce around $2-5 \times 10^7$ newly formed B cells every day, but only 1–10% end up contributing to the long-lived B cell pool [27]. Thus, the majority of the freshly formed B cells in adults are counter-selected before reaching maturity. In contrast, the available niches and resources in newborns allow developing lymphocyte populations to contribute to the long-lived mature pool until they attain steady-state numbers around weaning age [28,29] (Figure 1) — when the relationship between external environment and the host is being established. In a young mouse, most of the B cells show an immature or naïve phenotype and Ig gene somatic mutations are virtually absent [30], indicating that the newly formed primary Ig pool — together with the antibodies inherited from the immunological experienced mother — are the only Ig repertoire available at this age. Somatically mutated IgG, IgA and IgM first appear after weaning and accumulate in aging, suggesting that continuous encounter with antigens induces an ontogenetic learning process in the B lineage system.

Control of peripheral B cell numbers and selection of clonotypes limits the size and diversity of each B cell population in the primary repertoire [31,32]. Primary Ig repertoire selection can be exerted by competition of B cells for resources, including survival factors [32], and BCR-derived signals [33–38]. In both fetal liver and postnatal BM, B cell development occurs in a stepwise process that involves a series of selection checkpoints that test the stability and binding characteristics of the newly generated IgH and IgL chains (reviewed in Ref [39]). The initial Ig-associated requirement for the survival of a developing B cell is the ability of the new IgH chain to form with a surrogate light chain a functional pre-BCR. B cell precursors that survive this checkpoint clonally expand and initiate rearrangement of the IgL chain loci. While pre-BCR signaling is essential at this checkpoint (reviewed in Ref [40]), the role of potential engagement of pre-BCR to antigen is not clear.

From the pre-B cell stage and beyond, B lineage cells need to constantly receive some type of BCR-mediated signal for both clonal selection and survival [33,37,41]. The nature of these BCR signals, and the contribution of antigen engagement, versus 'tonic' signaling [42–45] are not completely understood. Several studies using monoclonal BCR transgenic and knock-in animals have demonstrated that self-antigens can negatively select B cell clones in the BM and periphery through Ig light chain editing or B cell clonal deletion [7–10]. However, the degree to which this kind of negative selection occurs in the setting of a natural polyclonal Ig repertoire is unknown. In addition, the relative contribution of positive selection — which has been shown to occur at the immature B [46] and transitional B cell stages [47] — to the available Ig repertoire similarly remains to be fully defined. As B cell subsets can harbor distinct Ig repertoires [33,35,48], antigens present in the microenvironment where B cell development takes place may exert defining roles in B cell selection and fate.

B cell development in the gut

The gut constitutes a dynamic environment constantly exposed to foreign components such as food, commensal/ mutualistic microbes, and potential pathogens. The first evidence of the link between gut and early B cell development was shown in chickens. Glick and colleagues demonstrated in 1956 that bursa of Fabricius, which is a diverticulum of avian hindgut during puberty, plays key roles in Ig production and diversification [49]. The primary Ig diversification and/or early B cell selection events

Download English Version:

https://daneshyari.com/en/article/6114992

Download Persian Version:

https://daneshyari.com/article/6114992

<u>Daneshyari.com</u>