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The electrophoresis of a charge-regulated spherical particle at an arbitrary position in a charged spherical
cavity is modeled under conditions of low surface potential (<25 mV) and weak applied electric field
(<25 kV/m). The charged cavity allows us to simulate the effect of electroosmotic flow, and the charge-
regulated nature of the particle permits us to model various types of surface. The problem studied
previously is reanalyzed based on a more rigorous electric force formula. In particular, the influences
of various types of charged conditions on the electrophoretic behavior of a particle and the roles of
all the relevant forces acting on the particle are examined in detail. Several new results are found. For
instance, the mobility of a particle has a local minimum as the thickness of a double layer varies, which
is not seen in the cases where the surface of a particle is maintained at a constant potential and at a
constant charge density.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Boundary effect is one of the key factors that are of practical
significance in electrophoresis operation. This effect can influence
the electrophoretic behavior of a particle both qualitatively and
quantitatively [1–3]. Among various types of boundary assumed in
theoretical analyses, the spherical cavity proposed by Zydney [4] is
simple in structure but is capable of modeling the boundary effect
appropriately under certain conditions [5–7]. The geometry of a
sphere in a spherical cavity has been adopted by many researchers
for studies of boundary effects on the electrophoretic behavior of
a particle [4–10].

In a study of the electrophoresis of a charge-regulated particle
in a spherical cavity, Yu et al. [6] found that if both the surface of
a particle and that of a cavity are kept at constant potential, then
the mobility of the particle may have a local minimum as its posi-
tion in the cavity varies. A similar result was also observed in Hsu
et al. [9]. This behavior was explained by charge reversal as a par-
ticle is sufficiently close to a cavity. In these studies, the evaluation
of the electric force acting on a particle was based on the total po-
tential, which includes the equilibrium potential and the potential
that arises from the applied electric field. Although this approach
has been adopted by many investigators, we showed recently that
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for a non-totally-symmetric geometry, it is more realistic to ex-
clude the driving force contributed by the equilibrium potential
[11,12]. In an attempt to provide more a rigorous explanation for
the electrophoretic behavior of a particle near a boundary, the
problem considered by Yu et al. [6] is reanalyzed in this study.
In particular, the influence of various types of charged conditions
on the electrophoretic behavior of a particle and the roles of all
the relevant forces acting on a particle are examined in detail.

2. Materials and methods

Let us consider the problem illustrated in Fig. 1, where a non-
conductive spherical particle of radius a is at an arbitrary position
in a nonconductive spherical cavity of radius b. The surface of the
particle bears an acidic function group AH, which is capable of un-
dergoing the dissociation reaction expressed by

AH ⇔ A− + H+. (1)

The equilibrium constant of this reaction, Ka, is expressed by

Ka = [A−]s(H+)s

[AH]s
, (2)

where [A−]s and [AH]s are the number densities of A− and AH
on the particle surface, respectively, and (H+)s is the surface con-
centration of H+. The cavity is filled with an incompressible New-
tonian fluid of constant physical properties containing electrolytes.
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Fig. 1. The electrophoresis of a charged, nonconductive spherical particle of radius
aat an arbitrary position in a spherical cavity of radius b, where (r, θ , z) are the
cylindrical coordinates with the origin at the center of the cavity, E is an applied
uniform electric field in the z-direction, and the center of the sphere is at z = m.

The cylindrical coordinates (r, θ, z) are adopted with the origin lo-
cated at the center of the cavity. The center of the particle is at
z = m. A uniform electric field E pointed in the z-direction with
strength E is applied. Because the system is symmetric about θ ,
only the (r, z) domain needs to be considered. Assuming steady
state, the governing equations of the present problem can be sum-
marized as follows [13]:

∇2Ψ = −ρe

ε
= −

∑
j

z jen j

ε
, (3)

∇ · u = 0, (4)

η∇2u − ∇p = −ρeE. (5)

Here, Ψ , ∇2, ε, ρe , n j , z j , and e are the electrical potential, the
Laplacian, the dielectric constant of the liquid phase, the space
charge density, the bulk number concentration and the valence
of ionic species j, and the elementary charge, respectively. u, η,
and p are the fluid velocity, the viscosity, and the pressure, re-
spectively.

Suppose that E is a weak electric field relative to that estab-
lished by the particle and/or the cavity, and the surface potential
of the particle and/or that of the cavity is low. The former is rea-
sonable if E is lower than ca. 25 kV/m, and the latter is satisfied
if the surface potential is lower than ca. 25 mV [11]. Under these
conditions, Eq. (3) can be replaced by [14]

∇2Ψ1 = κ2Ψ1, (6)

∇2Ψ2 = 0, (7)

where Ψ = Ψ1 + Ψ2, Ψ1 is the electrical potential in the absence
of E or the equilibrium potential, and Ψ2 is the electrical potential
outside the particle arising from E, E = −∇Ψ2.

κ =
[∑

j

n0
j (ez j)

2/εkBT
]1/2

is the reciprocal Debye length, n0
j , kB, and T being the bulk num-

ber concentration of ionic species j, the Boltzmann constant, and
the absolute temperature. The boundary conditions associated with
Eqs. (6) and (7) are assumed to be

n · ∇Ψ1 = −σp

ε
and n · ∇Ψ2 = 0 on the particle surface, (8)

Ψ1 = ζw and n · ∇Ψ2 = −Ez cos θ on the cavity surface, (9)

where σp is the surface charge density of the particle, ζw is the
surface potential of the cavity, n is the unit normal vector pointing
to the liquid phase, and Ez is the z-component of E.

Assuming Boltzmann distribution for the spatial variation of the
molar concentration of H+, it can be shown that [3]

σp = − eNs

1 + C0
H+
Ka

exp(− eζp
kB T )

, (10)

where Ns is the density of the acidic functional groups on the par-
ticle surface, ζp is the surface potential of the particle, and C0

H+ is
the bulk concentration of H+. If ζp is low, this expression can be
approximated by

σp ∼= −eNs

{1 + C0
H+/Ka}

− (e2Ns/kBT ){C0
H+/Ka}

{1 + C0
H+/Ka}2

ζp. (11)

Suppose that both the surface of the particle and that of the cavity
are no-slip. Then the boundary conditions associated with Eqs. (4)
and (5) are

u = U ez on the particle surface, (12)

u = 0 on the cavity surface. (13)

Here, U is the z-component of the particle velocity and ez is the
unit vector in the z-direction.

For the present case, the forces acting on the particle include
the electric force FE and the hydrodynamic force FD. If we let FE
and FD be the z-components of these forces, then FE + FD = 0 at
steady state. FE and FD can be evaluated by [1–3,14–17]

FE =
∫∫
s

σp Ez dS, (14)

FD =
∫∫
s

η
∂(u · t)

∂n
tz dS +

∫∫
s

− pnz dS, (15)

where S is the surface of the particle, t the unit tangent vector
on S,n the magnitude of n, and tz and nz are the z-components
of t and n, respectively. For a simpler treatment, the problem un-
der consideration is decomposed into two subproblems [18]. In the
first subproblem the particle translates with a constant velocity U
in the absence of E, and in the second subproblem E is applied but
the particle is held fixed. In the first subproblem the particle ex-
periences a conventional drag force FD,1 = −U D , where D is the
drag coefficient. In the second subproblem the particle experiences
both an electric force FE and a hydrodynamic force FD,2, which
arises from the movement of the ionic species in the double layer
surrounding the particle. The force balance FE + FD = 0 yields

U = FE + FD,2

D
. (16)

For convenience, the following scaled symbols are defined:
P (= 100m/(b − a)%) is the scaled position of the particle; κa is
the scaled thickness of the double layer; λ (= a/b) is the scaled
size of the cavity; A = e2Nsa/εkBT is a parameter measuring the
density of the acidic functional groups on the particle surface;
B = C0

H+/Ka is a parameter measuring the bulk concentration of
H+ (or pH); U∗ = U/U ref is the scaled electrophoretic mobility,
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