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In a recent work [J. Colloid Interface Sci. 316 (2007) 196] we studied the influence of the excluded vol-
ume effect on spatial distributions of ionic species and electrostatic potential in the neighborhood of
a suspended spherical particle. It was shown that the excluded volume effect considerably increases
the surface potential (for a given value of the particle charge) as compared to the case when ideal
ion behavior is assumed. In the present work we extend our previous equilibrium results to the per-
turbed/nonequilibrium problem and analyze the effect of ion size constraints on the electrophoretic
mobility of a rigid spherical particle immersed in a general electrolyte solution. We find that the elec-
trophoretic mobility always increases with the excluded volume effect, which might broaden the range of

experimental data that can be interpreted, including those cases where the measured mobility exceeded
the theoretical maximum value predicted by the standard model.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Electrophoresis, the movement of a charged entity in response
to an applied electric field, is one of the most powerful analytical
tools in colloidal science, being often used in the characterization
of colloidal systems [1-3]. This is why theoretical models relating
the electrophoretic mobility of the suspended particles in a system
to the properties of the system have been proposed in the last cen-
tury. Among these, the electrophoretic mobility of a rigid colloidal
spherical particle, based on the Gouy-Chapman theory of the dif-
fuse double layer, has special significance, since it constitutes the
first approximation to real colloidal suspensions. According to this
model, the particles are surrounded by a uniform surface density
of fixed charge, the ions in the electrolyte solution are treated as
mathematical points, and macroscopic values of the permittivity
and viscosity remain valid at the microscopic scale up to the very
surface of the particle.

Although highly versatile and relatively simple to compute, the
classical model fails to predict crucial experimental trends [4],
such as measured electrophoretic mobility larger than the the-
oretical maximum value predicted by the standard model [5,6].
A usual generalization is based on the Stern rather than the
Gouy-Chapman ion distribution of ions around the particle [7-9].
Although the Stern layer solves some deficiencies of the classi-
cal model [10], a problem becomes more important: the elec-
trophoretic mobility always decreases with the surface layer con-
ductivity, driving further away theory and experimental measures.
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In a previous paper [11], we focused on the effect of the finite
ion size on spatial distributions of ionic species and electrostatic
potential in the neighborhood of a suspended spherical particle.
We introduced a simple modification of the Poisson-Boltzmann
approach that takes into account the volume excluded by the
ions by means of a Langmuir-type correction. The resulting model
predicted that, for large ions, two regions can be distinguished
within the system: a saturation layer and a diffuse layer extend-
ing into the solution. This saturation layer, which appears because
the counterion concentration is limited by its maximal value (close
packing), plays a significant role in determining the surface poten-
tial of a charged colloidal particle: due to the excluded volume
effect the surface potential can be considerably increased (for a
given value of the surface charge density) with respect to the ideal
ion case. This suggests that for a given value of the particle charge
the electrophoretic mobility should increase if the ion size effect
is taken into account, at least under the Smoluchowski approxima-
tion of large «xa (« ! is the Debye length and a is the radius of the
particle).

In view of the above, here we try to account for the effect
of ion size constraints on the dynamics of the system, by first
establishing the drift-diffusion current dependence with ion vol-
ume using modified electrochemical potentials [12,13]. We apply
the resulting approach to describe the electrophoretic mobility of
a rigid spherical particle immersed in a general electrolyte solution
and comment on the differences with the standard electrokinetic
model. We show that the electrophoretic mobility always increases
with the excluded volume effect. This fact might broaden the range
of experimental data that can be interpreted, including those cases
where the measured mobility is higher than predicted by the stan-
dard model.
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2. Theory
2.1. Mathematical description of the problem

Let us to consider a spherical particle of radius a immersed in
an infinite solution with m ionic species. The equations governing

the steady-state dynamics of this system are well known:

a. Nernst-Planck equations for the ionic fluxes:
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b. Continuity equations for each ionic species:
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c. Poisson equation:
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d. Navier-Stokes equation for a viscous fluid:
m
—nV2V (@) + VPFE) + eNA[Z z,»cl-(F>] Vo (r)
i=1
+ pe[V(@®) - V]V (@) =0. (4)
e. Continuity equation for a incompressible fluid:
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Here V;, y4, ¢i, zi, and D; are, respectively, the velocity, the activity
coefficient, the local concentration (in mol per unit volume), the
valence, and the diffusion coefficient of the ionic species i. The
electric potential is represented by means of the symbol ¢; v is
the fluid velocity, and P is the pressure. The constant e represents
the elementary charge, while k, N, 1, pf and eex are, respectively,
the Boltzmann constant, the Avogadro number, the fluid viscosity
coefficient, the density of the fluid, and the absolute permittivity
of the solution.

This equation system is first simplified by combining Egs. (1)
and (2) to eliminate the ion velocities. The pressure change is also
eliminated by taking the curl of the Navier-Stokes Eq. (4), which
introduces a new variable: the vorticity 2(F) = V x (7). The re-
sulting equation system is first solved in equilibrium and then
under the action of a weak DC electric field, E,;. The perturbed
equations are linearized with respect to the applied field, referring
the perturbed variables to their equilibrium values (upper index 0)
plus a perturbation term (§) and keeping in the final equations
only terms that are linear in the perturbations. The resulting equa-
tion system, written using a system of spherical coordinates with
origin centered on the particle and with polar axis in the direction
of the applied field, is
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The boundary conditions for the electrophoretic problem have
been widely described [14-16]:

e Inside the particle the electric field is uniform.

e At the particle surface the electric potential and the normal
component of the displacement vector are continuous. The
fluid velocity and the radial component of the ion velocities
vanish. Also the conditions of impenetrability for all the ion
types combined with the Nernst-Planck equation give
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e Far from the particle, the electric potential reduces to that
of the applied field and the fluid velocity to minus the elec-
trophoretic velocity, v,. The perturbations of the ionic con-
centrations and the vorticity vanish.

e The total force acting on the particle vanishes.
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It must be noted that if an ideal solution behavior (y; =1) is
assumed, the above Egs. (6)-(10) take the usual form of the the-
oretical model governing the dynamics of this system (standard
electrokinetic model), which has been the default model for both
equilibrium and nonequilibrium calculations in colloid science for
the most part of the 20th century [1-3,14-16].

In the following section we try to account for the effect of the
ion size constraints on the dynamics of the system.

2.2. Electrokinetic equations for finite-volume ions
In the absence of an applied electric field, i.e., when the system

is in equilibrium, the Nernst-Planck equations (1) can be solved,
leading to a distribution function for the ionic concentrations,
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where ¢ is the bulk concentration of the ionic species i. For

yio =1, Eq. (11) transforms into the well-known Boltzmann dis-
tribution for the ionic concentrations (ideal solution behavior).

As can be seen, due to the fact that yl.o depends on all the
ion concentrations ()/io(r) = yio(c?,...,c%)) [17], Eq. (11) is very
complicated so that c?(r) cannot be evaluated explicitly in terms of
¢9 alone. As a consequence, the Poisson equation remains implicit.

We assume that the finite size of the ions in the solution
is taken into account by means of the excluded volume effect,
which has a direct physical interpretation. The concentration of
ions that builds up at regions of high electric potential cannot
exceed a given limiting value (close packing) mainly determined
by the hydration radius, so that the Boltzmann distribution breaks
down. Under these conditions, a remarkably simple distribution
law can be formulated postulating that the ion concentrations are
expressed by a Langmuir-type correction for the excluded volume
[18,19]:
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