ELSEVIER

Contents lists available at ScienceDirect

### Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv



#### **Short Communication**

# Cytokine modulation correlates with severity of monkeypox disease in humans



Sara C. Johnston<sup>a</sup>, Joshua C. Johnson<sup>a,1</sup>, Spencer W. Stonier<sup>a</sup>, Kenny L. Lin<sup>a</sup>, Neville K. Kisalu<sup>b,2</sup>, Lisa E. Hensley<sup>a,1</sup>, Anne W. Rimoin<sup>c,\*</sup>

- a Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
- <sup>b</sup> Department of Microbiology, Immunology, and Molecular Genetics, UCLA, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, CA 90095, USA
- <sup>c</sup> Department of Epidemiology, UCLA School of Public Health, 650 Charles E, Young Dr. South, Los Angeles, CA 90024, USA

#### ARTICLE INFO

# Article history: Received 24 September 2014 Received in revised form 1 December 2014 Accepted 2 December 2014

Keywords:
Orthopoxvirus
Monkeypox
Cytokine
Cytokine storm
Regulatory T cell

#### ABSTRACT

Background: Human monkeypox is a zoonotic disease endemic to parts of Africa. Similar to other orthopoxviruses, virus and host have considerable interactions through immunomodulation. These interactions likely drive the establishment of a productive infection and disease progression, resulting in the range of disease presentations and case fatality rates observed for members of the *Orthopoxvirus* genus. Objectives: Much of our understanding about the immune response to orthopoxvirus infection comes from either *in vitro* or *in vivo* studies performed in small animals or non-human primates. Here, we conducted a detailed assessment of cytokine responses to monkeypox virus using serum from acutely ill humans collected during monkeypox active disease surveillance (2005–2007) in the Democratic Republic of the Congo.

*Study design:* Nineteen serum samples that were from patients with confirmed monkeypox virus infections were selected for cytokine profiling. Cytokine profiling was performed on the Bio-Rad Bioplex 100 system using a 30-plex human cytokine panel.

Results: Cytokine profiling revealed elevated cytokine concentrations in all samples. Overproduction of certain cytokines (interleukin [IL]-2R, IL-10, and granulocyte macrophage-colony stimulating factor were observed in patients with serious disease (defined as >250 lesions based on the World Health Organization scoring system).

Conclusions: The data suggest that cytokine modulation affects monkeypox disease severity in humans.
© 2014 Published by Elsevier B.V.

#### 1. Background

Monkeypox virus (MPXV) is an orthopoxvirus similar to smallpox, and can cause an acute systemic lesional disease associated with high morbidity. Over the last 30 years there has been a marked

Abbreviations: IFN, interferon; IL, interleukin; MIP, macrophage inflammatory protein; MCP-1, monocyte chemoattractant protein-1; MPXV, monkeypox virus; DRC, Democratic Republic of the Congo; GM-CSF, granulocyte macrophage-colony stimulating factor; PCR, polymerase chain reaction; Th1 cells, T helper 1 cells; Th2 cells, T helper 2 cells; TNF, tumor necrosis factor; Treg, regulatory T cells.

increase in the number of cases reported in the Democratic Republic of the Congo (DRC) [1].

Immunopathogenesis is believed to play a major role in disease severity and outcome during orthopoxvirus infections. Cytokine storm during variola virus infection has been suggested in human cases and non-human primate models [2–4]. Induction of a cytokine storm is driven by inflammatory mediators and cellular constituents which lead to overproduction of inflammatory cytokines, resulting in massive inflammation, sepsis and septic shock [5]. To date, the presence of cytokine storm following MPXV infection is predicted but yet to be empirically demonstrated.

#### 2. Objectives

To determine if a cytokine storm is associated with MPXV infection, serum samples were collected from individuals presenting with febrile illness and rash during active monkeypox disease

<sup>\*</sup> Corresponding author at: 650 Charles E. Young Dr. South, CHS 71-279B, Box 177220, Los Angeles, CA 90095, USA. Tel.: +1 310 825 2096; fax: +1 310 206 6039. E-mail address: arimoin@ucla.edu (A.W. Rimoin).

<sup>&</sup>lt;sup>1</sup> Present address: Integrated Research Facility, National Institute of Allergy and Infectious Diseases, 8200 Research Plaza, Fort Detrick, MD 21702, USA.

<sup>&</sup>lt;sup>2</sup> Present address: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.

**Table 1**Metadata of 19 patients infected with monkeypox from health zones within the Sankuru District of the Democratic Republic of the Congo.

| Patient ID | Health zone  | Age  | Sex | Disease severity <sup>a</sup> | Infection source | Monkeypox lineage | Genbank accession # |
|------------|--------------|------|-----|-------------------------------|------------------|-------------------|---------------------|
| 06MPX0966  | Katako Kombe | 20.0 | M   | Mild                          | Unknown          | A                 | =                   |
| 06MPX0970  | Katako Kombe | 10.0 | F   | Serious                       | Human            | С                 | JX878408            |
| 06MPX1082  | Katako Kombe | 24.0 | M   | Severe                        | Human            | ND                | =                   |
| 06MPX1092  | Kole         | 10.0 | F   | Mild                          | Animal           | Α                 | <del>-</del>        |
| 06MPX1094  | Kole         | 1.5  | F   | Serious                       | Human            | ND                | _                   |
| 07MPX0013  | Kole         | 24.0 | F   | Mild                          | Human            | В                 | _                   |
| 07MPX0016  | Kole         | 2.6  | F   | Moderate                      | Human            | В                 | _                   |
| 07MPX0019  | Katako Kombe | 9.0  | F   | Severe                        | Human            | ND                | _                   |
| 07MPX0021  | Katako Kombe | 13.0 | F   | Severe                        | Human            | Α                 | <del>-</del>        |
| 07MPX0104  | Bena Dibele  | 4.0  | F   | Serious                       | Unknown          | D                 | JX878417            |
| 07MPX0109  | Lodja        | 3.0  | M   | Serious                       | Human            | ND                | _                   |
| 07MPX0275  | Djalo Ndjeka | 10.0 | F   | Moderate                      | Human            | С                 | JX878419            |
| 07MPX0281  | Djalo Ndjeka | 17.0 | M   | Moderate                      | Animal           | С                 | _                   |
| 07MPX0286  | Lomela       | 20.0 | M   | Serious                       | Animal           | Α                 | JX878421            |
| 07MPX0412  | Katako Kombe | 3.8  | F   | Moderate                      | Unknown          | С                 |                     |
| 07MPX0435  | Djalo Ndjeka | 1.8  | M   | Severe                        | Human            | ND                | <del>-</del>        |
| 07MPX0438  | Djalo Ndjeka | 10.0 | F   | Mild                          | Human            | ND                | _                   |
| 07MPX0450  | Kole         | 11.0 | M   | Severe                        | Human            | С                 | JX878426            |
| 07MPX0496  | Katako Kombe | 29.0 | F   | Moderate                      | Human            | С                 | _                   |

ND = not determined.

surveillance in the DRC (2005–2007). Monkeypox infection was confirmed by polymerase chain reaction (PCR) [1].

#### 3. Study design

#### 3.1. Sample acquisition and processing

Methods for sample acquisition and processing are published elsewhere [1]. In MPXV-infected patients [1], disease severity (mild or <25 lesions, moderate or 25–99 lesions, severe or 100–250 lesions, and serious or >250 lesions) was determined using the World Health Organization scoring system used during smallpox eradication [6,7]. Samples were stratified based on geographic location, disease severity, and transmission source (human or animal). Nineteen cases were selected for cytokine profiling. The breakdown of disease severity was: mild = 4 cases; moderate = 5 cases; severe = 5 cases; serious = 5 cases. Ethical approval was obtained from participating institutions, and informed consent was obtained from patients and parents/guardians.

#### 3.2. Human cytokine analysis

Serum cytokines were measured in triplicate using Cytokine Human Magnetic 30-Plex Panel (Life Technologies, Grand Island, NY). Briefly, serum samples were thawed, vortexed, and centrifuged to remove any cryoprecipitants. Pre-mixed, lyophilized stock cytokines were rehydrated and serially diluted 3-fold to produce the standard curve. Fifty microliters of standards, or blanks were assayed per replicate well as per manufacturer's instructions (Life Technologies, Grand Island, NY). Data were acquired on a Bio-Rad Bioplex 100 system (Bio-Rad Laboratories, Hercules, CA), and exported into GraphPad Prism (GraphPad Software, La Jolla, CA) for analysis. Normal human cytokine ranges and averages were obtained from the Bio-Plex Suspension Array System Technical Note 6029 available on the Bio-Rad website (www.bio-rad.com). Statistical significance was determined using unpaired T tests conducted at the 95% confidence level.

#### 4. Results

#### 4.1. Cytokine responses are predictive of disease severity

Nineteen serum samples (Table 1) from confirmed MPXV infections were analyzed using a multiplex cytokine assay. Although

concentrations of interleukin (IL)-2R were similar between mild, moderate, and severe cases, concentrations were significantly higher (P<0.05) for serious cases (Table 2). MIP-1 $\alpha$  and MIP-1 $\beta$ concentrations in all cases were elevated, and concentrations of these cytokines were significantly elevated (P < 0.05) in mild cases compared to moderate and severe cases. Although all cases had elevations in serum concentrations of IL-1RA, IL-6, and IL-15, moderate cases had significantly lower concentrations of IL-1RA (this difference was not statistically significant [P>0.05]), severe cases had significantly lower concentrations of IL-6 (P < 0.05), and moderate and severe cases had lower concentrations of IL-15 compared to other disease categories (this difference was not statistically significant [P>0.05]). IL-10 concentrations were elevated above normal range for all categories of disease severity; however, the difference between serious cases and cases in all other severity categories was statistically significant (P < 0.05). IL-10 concentrations were roughly proportional to disease severity. Differences between mild, moderate, and severe were not statistically significant (P > 0.05). Granulocyte macrophage-colony stimulating factor (GM-CSF) was noticeably elevated above normal human range only for serious disease cases; concentrations in mild, moderate, and severe disease were not significantly different (P > 0.05).

Serum concentrations of IL-1 $\beta$ , IL-1RA, IL-2R, IL-4, IL-5, IL-6, IL-8, IL-13, IL-15, IL-17, MCP-1, and RANTES were consistently elevated across all severity categories. Interferon (IFN)- $\alpha$ , IFN- $\gamma$ , IL-2, IL-7, IP-10, IL-12p40, MIG, eotaxin, and tumor necrosis factor (TNF)- $\alpha$  concentrations were not significantly elevated for any severity category.

#### 5. Discussion

From serological examination of cytokine responses to human MPXV infection, a cytokine storm appears to occur during human monkeypox disease. We also found evidence of a prominent T helper 2 (Th2) response, and a dampened Th1 response, following MPXV infection. Th2-associated cytokines IL-4 (and the closely related IL-13), IL-5, and IL-6 were elevated above normal human range and IL-10 was elevated in serious cases, whereas serum concentrations of Th1-associated cytokines (IL-2, TNF- $\alpha$ , IL-12, IFN- $\gamma$ ) fell within normal range for all severity categories. During MPXV infection, Th2 immune responses (*e.g.*, IL-10, IL-4) could downregulate Th1-immune responses (*e.g.*, IL-12, INF- $\gamma$ , IL-2) as has been seen during infection with recombinant vaccinia virus expressing IL-4 [8]. IL-4, IL-10, and IL-13 increase vaccinia virus replication

<sup>&</sup>lt;sup>a</sup> Disease severity based on the World Health Organization lesion scoring system.

### Download English Version:

## https://daneshyari.com/en/article/6120417

Download Persian Version:

https://daneshyari.com/article/6120417

<u>Daneshyari.com</u>