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Condensation of a non-wetting fluid on a solid surface
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Abstract

Theoretical studies of a drop moving under condensation from the surrounding vapor, have been provided. Two cases are considered. In the
first, the rate of condensation is large that the drop “moves” because condensation has changed its dimensions. The model provided here shows
that the rate of spreading is a constant, proportional to the heat flux and inversely proportional to the macroscopic contact angle. This compares
well with available experimental data. The other model where the rate of condensation is small, is taken from existing results and comes close
to explaining one set of experimental data. It is based on the use of viscous forces as the primary rate mechanism. Its shortcomings have been
discussed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Evaporation from wedges, drops and thin films have received
considerable attention, in both experimental and theoretical
considerations [1–6]. Where thin liquid film exists, disjoining
pressure is used. It arises as a body force in the equations of mo-
tion [7] along with the capillarity. It also arises in changes that
affect the chemical potentials. In turn, it affects boiling points
and saturated vapor pressure [8] and which in turn it affects the
rate of evaporation [9]. Of course, the capillary forces need to
be considered alongside as well.

It also appears that condensation is exactly the opposite of
the evaporation process although some care must be used before
such assertions can be made. Two recent cases of condensation
studied by Wayner and co-workers [10,11] appear very interest-
ing where the liquids are non-wetting. Condensation happens
on a cold surface where a thin film is first formed. Then drops
nucleate and grow/spread over the thin films. The film thickness
remains constant and the investigators measure the kinetics of
the drop growth/spreading. The disjoining pressure that gives
rise to such a behavior is shown schematically in Fig. 1. They
were first measured by Derjaguin and Zorin [12], where the
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dashed curve cannot be measured, but now a sound theory exists
for it [13]. The disjoining pressure Π is related to the unsatura-
tion in the vapor pressure, and falls to zero as the vapor pressure
reaches the saturation value. As the vapor pressure is increased,
the film thickness h also increases. But at point P, the thin film
of thickness hP is in equilibrium with an infinitely thick film,
that is, the bulk liquid. Hence as we move to the right of the
point P, droplets appear.

A short description of a model for evaporation/condensation
is also described here in brief. A model to describe the wetting
kinetics has been given by de Gennes [14]. The viscous dissi-
pation in a wedge is equated to the rate of surface work done.
One important assumption here is that the lubrication theory
approximation holds in the wedge shown in Fig. 2. It assumes
that the flow rates and the slope of the wedge are small. Qua-
sistatic approximation is made, it is also assumed that only the
tangential velocity vx is significant and it varies mainly in the
z-direction. Ybarra and Neogi [6] included in the dissipation
the heat transfer terms and the results compared well with the
available experimental data. However, as they retained the lu-
brication theory approximation, their solution is valid at low
rates of evaporation/condensation as they point out. Consider
the condensation shown with an arrow in Fig. 2. If the rate of
condensation is high, then the normal velocity vy can no longer
be ignored and the lubrication theory fails. For this particu-
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Fig. 1. Disjoining pressure as a function of film height. The dashed line repre-
sents regions that cannot be determined using experiments. The point P where
ΠP = 0, gives us the thickness of the film hP which would be in equilibrium
with a liquid drop.

Fig. 2. Shape of the wedge that is usually analyzed under lubrication theory
approximation. The bold arrow downwards represents condensation. If conden-
sation is significant, vy will appear and the lubrication theory will not work.

Fig. 3. The shape of a drop ending in a thin film and growing with condensation
is shown schematically. Point R is where the thin film remains at constant thick-
ness. Point O is the moving contact line. Point Q is where the film is sufficiently
thick that the disjoining pressure is zero.

lar case where the rate of condensation is high that the drop
“moves” because of its growth, there are no theoretical results
available.

Below, a model for high condensation rates is first made
available. It is shown that it satisfies the 2-propanol data [11].
In a shorter section, it is shown that the n-butanol data [10] are
close but not equivalent to the small condensation rate data. In
these experiments, condensation leads to a thin film and then
droplets form and grow/spread. Various quantities associated
with the growing/spreading droplets are measured. One key ob-
servation was that the thickness of the thin film ahead of the
drop (region R in Fig. 3) did not change with time. Whereas
the vapor was maintained at constant temperature Ts and at a
pressure, which is assumed here to be supersaturated pss, that

is above saturation pressure ps, the substrate was cold at Tw as
heat was withdrawn from it. The investigators conclude from
indirect evidence that the heat flux was a constant in an experi-
mental run.

They also found that although the microscopic contact angle
in these cases were zero, there was a macroscopic contact an-
gle α in the thicker part of the drop which remained a constant
although the dimensions of the drop were changing with time.
This angle appeared to correspond more with the slope of the
basic shape of the drop (segment of a sphere) extrapolated to
the horizontal and were located at a point where the slope was
the highest.

2. High condensation rates

It is assumed here that the rate of condensation is high such
that the drop “moves” because of the change in shape. If vis-
cous flow is ignored, the film thickness h(r), shown in Fig. 3,
is governed by the augmented Young–Laplace equation
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where γ is the surface tension, pc is the capillary pressure and a
constant. The term in the square brackets is the curvature where
it is assumed that the slopes are small. At point R, there is no
curvature and

(2)−ΠR = pc.

In the drop, that is, at Q,
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Since the film thickness is high there, the disjoining pressure is
negligible. It also shows that the curvature is a constant there
and Eq. (3) can also be written as

(4)
2γ

R
= pc,

where R is the radius of curvature of the profile given by a seg-
ment of sphere. It shows that pc is positive. Hence, from Eq. (2),
ΠR is negative. The only way this is possible from Fig. 1 is if
the thickness at R lies to the right of point of P. That is, the
thickness at R in Fig. 3 is a non-equilibrium thickness.

Thermodynamics is considered next. The changes in chem-
ical potential due to changes in pressure and temperature are
given by

(5)dμl = vl dpl − sl dT = vl d(2γ /R − Π) − sl dT ,

where μ is the chemical potential, v is the specific volume,
p the pressure and s the specific entropy. The subscript l stands
for the liquid and the excess pressure in the liquid (over the
saturation vapor pressure) has been used following the results
from Eqs. (1)–(4). In the vapor phase

(6)dμv = vv d(pss − ps) − sv dT ,

where it has been assumed that the pressure in the vapor phase
remains constant at the saturation pressure. Subtracting Eq. (5)
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