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Abstract

The boundary effect on electrophoresis is investigated by considering a spherical particle at an arbitrary position in a spherical cavity. Our
previous analysis is extended to the case where the effect of double-layer polarization can be significant. Also, the effect of a charged boundary,
which yields an electroosmotic flow and a pressure gradient, thereby making the problem under consideration more complicated, is investigated.
The influences of the level of the surface potential, the thickness of double layer, the relative size of a sphere, and its position in a cavity on
the electrophoretic behavior of the sphere are discussed. Some results that are of practical significance are observed. For example, if a positively
charged sphere is placed in an uncharged cavity, its mobility may have a local minimum as the thickness of the double layer varies. If an uncharged
sphere is placed in a positively charged cavity, the mobility may have a local minimum as the position of the sphere varies. Also, if the size of
a sphere is fixed, its mobility may have a local minimum as the size of a cavity varies. These provide useful information for the design of an
electrophoresis apparatus.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Electrophoresis is one of the most important analytical tools
in various fields such as colloidal, biological, biomedical, and
biochemical sciences [1,2], to name a few. It is also a basic
technique for the separation/processing of particles of colloidal
size in practice. Recent research and development in biochip
technology and electrokinetic phenomena in microchannels are
also related closely to electrophoresis. In these cases, the effect
of the presence of a boundary on the electrophoretic behavior
of a particle becomes important and the classical result, which
is based on an isolated particle in an infinite fluid, needs be
modified accordingly. A considerable amount of work has been
devoted to the analysis of boundary effects of various types
[3–18]. Among these, a rigid sphere at the center of a spherical
cavity, considered by Zydney [6] and Lee et al. [7,8], is a repre-
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sentative one. Although this geometry is of a one-dimensional
nature, thereby considerably simplifying relevant mathematical
treatments, the key influence of the presence of a boundary on
the electrophoretic behavior of an entity can be taken into ac-
count. However, because the cavity surface was assumed to be
uncharged in these studies, the effect of electroosmosis, an ef-
fect of practical significance, was neglected.

In a previous study, Hsu et al. [9] considered the elec-
trophoresis of a rigid sphere at an arbitrary position in a spher-
ical cavity under conditions of weak applied electric field and
low surface potential, where the effect of double-layer polar-
ization, an effect of fundamental significance, can be neglected.
The same problem was also analyzed by Hsu et al. [10] for the
case in which the cavity surface can be charged. In the present
study, these analyses are further extended to the case of arbi-
trary surface potential and double-layer thickness; that is, the
effect of double-layer polarization can be significant. Here, both
the surface of a sphere and that of a cavity can be charged; that
is, the effect of the electroosmotic flow arising from the pres-
ence of the latter is taken into account.
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Fig. 1. Schematic representation of the problem where a sphere of radius a is
placed in a spherical cavity of radius b. An electric field E parallel to the z-axis
is applied. The center of the particle is at z = m and that of the cavity at z = 0.

2. Theory

The problem under consideration is illustrated in Fig. 1,
where a nonconducting sphere of radius a is placed at an ar-
bitrary position in a spherical cavity of radius b. Let ζa and ζb

be respectively the surface potential of the sphere and that of
the cavity. Spherical coordinates (r, θ,ϕ) are adopted, with the
origin located at the center of the cavity. The center of the par-
ticle is at z = m, and that of the cavity at z = 0. A uniform
electric field E in the z-direction is applied. The cavity is filled
with an aqueous Newtonian fluid containing z1:z2 electrolyte;
z1 and z2 are respectively the valence of cations and that of an-
ions, with α = −z2/z1. Let ε be the permittivity of the liquid
phase, ρ the space charge density, e the elementary charge, nj

and Dj the number concentration and the diffusivity of ionic
species j respectively, kB and T the Boltzmann constant and
the absolute temperature respectively, φ the electrical potential,
and v, η, and p be the velocity, the viscosity, and the pressure
of the liquid phase respectively. Then the phenomenon under
consideration can be described by
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(3)∇ · v = 0,
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where ∇2 and ∇ are respectively the Laplace operator and the
gradient operator.

Following the treatment of O’Brien and White [19], we let
φ = φ1 + φ2, where φ1 and φ2 are respectively the equilibrium

potential or the potential in the absence of E and a perturbed
potential arising from E. Also,

(5)nj = nj0 exp
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)
,

where gj is a perturbed potential that simulates the deformation
of the double layer.

Suppose that the applied electric field is weak compared with
that established by the sphere and/or the cavity. Then the ex-
pressions for the distortion of the double layer, the electrical
potential, and the flow field near a sphere can be linearized.
Using Eqs. (1), (2), and (5) and the relation φ = φ1 + φ2 and
neglecting terms involving the product of two perturbed terms,
it can be shown that the concentration and the electric fields can
be described by
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In these expressions, ∇∗ = a∇ is the scaled gradient op-
erator, ∇∗2 = a2∇2 is the scaled Laplace operator, and φr =
ζkz1e/kBT is the scaled surface potential, where ζk = ζa if
ζa �= 0, and ζk = ζb if ζa = 0. n∗

j = nj/n10, φ∗
j = φj/ζk , Pej =

ε(zj e/kBT )2/ηDj , which is the electrical Péclet number of
ion species j , and g∗

j = gj/ζk, j = 1,2; κ = [∑2
j=1 nj0(ezj )

2/

εkBT ]1/2 is the reciprocal Debye length; v∗ = v/UE ; and UE =
(εζ 2

k /ηa) is the magnitude of the velocity of the particle pre-
dicted by the Smoluchowski theory when an electric field of
strength (ζk/a) is applied.

In terms of the scaled symbols, the flow field can be de-
scribed by

(12)∇ · v∗ = 0,

(13)−∇p∗ + η∇2v∗ + ∇2φ∗∇φ∗ = 0,

where p∗ = p/pref and pref = εζ 2
k /a2.

Suppose that both the sphere and the cavity surface are non-
conductive, nonslip, and impermeable to ionic species, and the
concentration of ionic species reaches the bulk value on the
cavity surface. Then the boundary conditions associated with
Eqs. (6)–(9) and (12)–(13) can be expressed as

(14)φ∗
1 = ζa/ζk on the sphere surface,

(15)φ∗
1 = ζb/ζk on the cavity surface,

(16)n · ∇∗φ∗
2 = 0 on the sphere surface,

(17)n · ∇∗φ∗
2 = −E∗

z cos θ on the cavity surface,

(18)n · ∇∗g∗
j = 0, j = 1,2 on the sphere surface,
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