

www.elsevierhealth.com/journals/jinf

HHV-6 infection after allogeneic hematopoietic stem cell transplantation: From chromosomal integration to viral co-infections and T-cell reconstitution patterns

Adrien Quintela^a, Vanessa Escuret^b, Sandrine Roux^c, Pascale Bonnafous^d, Lila Gilis^a, Fiorenza Barraco^a, Hélène Labussière-Wallet^a, Sophie Duscastelle-Leprêtre^a, Franck-Emmanuel Nicolini^a, Xavier Thomas^a, Christian Chidiac^c, Tristan Ferry^{c,e}, Emilie Frobert^b, Stéphane Morisset^a, Françoise Poitevin-Later^f, Guillaume Monneret^f, Mauricette Michallet^a, Florence Ader^{c,e,*}, on behalf of the Lyon HEMINF Study Group

^a Hematology Department, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France

^b Virology Laboratory, Laboratoire de Virologie Est, Hospices Civils de Lyon, F-69677 Bron, France

^c Infectious Diseases Department, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, F-69004 Lyon,

France

^d Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, Inserm U1135, PVI Team, Paris, France

^e Inserm U1111 CIRI, Claude Bernard Lyon I University, Lyon, France

^f Cellular Immunology Laboratory, Hôpital E. Herriot, Hospices Civils de Lyon, F-69003 Lyon, France

Accepted 29 September 2015 Available online

KEYWORDS Human herpes virus 6;	Summary Objectives: Human herpes virus 6 (HHV-6) can reactivate after allogeneic hemato- poietic stem cell transplantation (allo-HSCT) and may be associated with significant clinical
Hematopoietic stem cell	manifestations.
transplantation;	Methods: Case control study of HHV-6 infections after allo-HSCT. Chromosomal integration
T lymphocytes;	(ciHHV-6) for viral loads \geq 5.5-log10 copies/mL was investigated. Viral co-infections, T-cell

* Corresponding author. Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, 103 Grande-Rue de la Croix-Rousse, 69317 Lyon cedex 04, France. Tel.: +33 472 071 560; fax: +33 472 072 441. *E-mail address:* florence.ader@chu-lyon.fr (F. Ader).

http://dx.doi.org/10.1016/j.jinf.2015.09.039

0163-4453/© 2015 Published by Elsevier Ltd on behalf of The British Infection Association.

Please cite this article in press as: Quintela A, et al., HHV-6 infection after allogeneic hematopoietic stem cell transplantation: From chromosomal integration to viral co-infections and T-cell reconstitution patterns, J Infect (2015), http://dx.doi.org/10.1016/ j.jinf.2015.09.039

Cytomegalovirus; BK virus; Chromosomally integrated HHV-6

recovery, risk factors and outcome were compared in HHV-6- and non-HHV-6-infected patients. Antiviral treatment strategies were reviewed.

Results: Among 366 adult allo-HSCT recipients, 75 HHV-6 infections occurred. Three (4%) recipients were ciHHV-6. HHV-6 infections were associated with CMV (p = 0.05; sdHR 1.73. CI 0.99 -3.02) and/or BKV infections (p < 0.0001: sdHR 4.63, CI 2.04-10.53) but not EBV reactivation (p = 0.34). A slower CD8+ T-cells recovery was observed until 6 months after allo-HSCT in the HHV-6-infected group (p < 0.001), independently of acute and/or chronic graft-versus-host disease. The overall probability of survival after allo-HSCT was diminished for active HHV-6infected patients (p = 0.0326). Cord blood unit recipients had a higher risk of developing HHV-6 infection compared to bone marrow recipients (p = 0.0007; sdHR 3.82, CI 1.76 -8.27). Anti-HHV-6 treatment achieved complete response in only 2/3 of the cases.

Conclusions: In this series of allo-HSCT recipients, 4% were ciHHV-6, active HHV-6 infection was likely associated with CMV and BKV co-reactivations, delayed CD8+ T-cell recovery and

© 2015 Published by Elsevier Ltd on behalf of The British Infection Association.

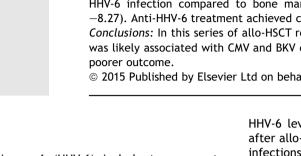
Introduction

Human herpes viruses 6 (HHV-6) include two separate species HHV-6A and HHV-6B that infect nearly all individuals during early infancy. HHV-6B is the causative agent of exanthema subitum, a childhood disease characterized by high fever and a mild skin rash, occasionally complicated by seizures or encephalitis; HHV-6A has not been etiologically linked to any disease.¹ HHV-6 establish life-long latency with a strong tropism for hematopoietic cells, including CD34+ progenitor stem cells.²⁻⁴ In vitro studies have shown that replication can occur in these latter cells through hematopoietic differentiation.⁵ HHV-6 reactivation is recognized as a pathogenic infection in immunocompromised hosts, particularly after allogeneic hematopoietic stem cell transplantation (allo-HSCT) throughout the aplasiarelated immunodeficiency phase and the immunosuppressive therapy implemented for prevention of graft-versushost disease (GvHD).⁶ HHV-6 genome has the ability to integrate into human chromosomes of cells, which can be transmitted as germinal cells to offspring and through allo-HSCT (Mendelian inheritance). This condition is present in $\sim 1\%$ of the population and its implication in HHV-6 central nervous system (CNS) disease is discussed.^{7–11}

HHV-6 infection after allo-HSCT is estimated to occur from 20 to 72% of the cases and HHV-6B reactivation is the rule rather than HHV-6A.^{8,11-18} In that setting, HHV-6related clinical manifestations range from febrile rash to the severe post-transplantation acute limbic encephalitis (PALE).^{13,18,19} Biologically, HHV-6 infection is frequently associated with liver dysfunction,²⁰ hematopoietic recovery impairment.^{17,21–23} Reported risk factors associated with HHV-6 infection include HLA mismatch, steroid treatment, the use of either unrelated donor or cord blood unit (CBU) grafts.^{12,14,15,18} In addition, HHV-6 infection may increase the risk of acute GvHD and facilitate superinfections with cytomegalovirus (CMV).^{13,24} PALE is the most serious complication linked to HHV-6 infection, commonly referred as the key criterion accounting for greater morbidity and lethality.^{16,25,26}

As several aspects of HHV-6 infection still need to be addressed, this study focuses on 75 cases after allo-HSCT. We have investigated the possibility of chromosomally integrated human HHV-6 in recipients with whole blood HHV-6 levels that exceed 5.5-log10 copies/mL before or after allo-HSCT. We have tested the hypothesis that HHV-6 infections may correlate with other opportunistic and challenging virus infection(s) such as CMV, BK virus (BKV) and EBV as well as a slow CD4+ and CD8+ T cell recovery. We have determined HHV-6 infection incidence, risk factors, and impact of HHV-6 infection on transplantation outcome. Finally, therapeutic strategies applied to HHV-6infected patients have been examined.

Materials and methods


Patients, donors and disease characteristics

Patient's baseline characteristics are summarized in Table 1. According to the centre practice, whole blood quantitative HHV-6 DNA was measured once every 2 weeks from allo-HSCT to day 90, and monthly thereafter until month 12 post-allo-HSCT. The threshold delimiting HHV-6 infection was a whole blood HHV-6 DNAaemia >3-log10 copies/mL. Active HHV-6 infection and/or presence of ciHHV-6 in donor or recipient cells required to collect ≥ 2 consecutive HHV-6 DNAaemia above 3-log10 copies/mL. HHV-6-associated encephalitis was part of HHV-6 diseases defined as the occurrence of central nervous system (CNS) disorders including PALE associated with a positive PCR for HHV-6 in the cerebrospinal fluid (CSF) of non ciHHV-6 individuals and discussed for ciHHV-6 individuals.^{6,12} Simultaneous co-infections with CMV, EBV and BKV were documented. CMV infection was defined as any level of blood CMV DNA above 3-log10 copies/mL.²⁷ EBV infection was defined as any level of blood EBV DNA above 4-log10 copies/mL.²⁸ The diagnosis of BKV infection relied on the presence of haemorrhagic cystitis defined by the association of hematuria with urinary symptoms and positive BKV viruria and/or viremia, as previously defined.²

Viral monitoring of HHV-6, CMV, EBV and BKV by PCR

Viral DNA was extracted by an automatic nucleic acid platform (NucliSENS[®] EasyMAG[™] BioMérieux) from a whole blood sample, as recommended by manufacturer's

Please cite this article in press as: Quintela A, et al., HHV-6 infection after allogeneic hematopoietic stem cell transplantation: From chromosomal integration to viral co-infections and T-cell reconstitution patterns, J Infect (2015), http://dx.doi.org/10.1016/ j.jinf.2015.09.039

Download English Version:

https://daneshyari.com/en/article/6122649

Download Persian Version:

https://daneshyari.com/article/6122649

Daneshyari.com