

Journal of Colloid and Interface Science 307 (2007) 235-245

JOURNAL OF
Colloid and
Interface Science

www.elsevier.com/locate/jcis

Effect of added ionic liquid on aqueous Triton X-100 micelles

Kamalakanta Behera, Parmila Dahiya, Siddharth Pandey*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Received 29 September 2006; accepted 6 November 2006

Available online 20 December 2006

Abstract

Keywords: Ionic liquids; TX-100; Nonionic surfactants; bmimPF₆; Fluorescence probes

1. Introduction

Due to their unusual properties, room temperature ionic liquids (ILs) are receiving increased attention from both academic and industrial research communities [1–10]. Many chemical reactions have been reported in ILs [11–13]. Novel as well as routine analytical applications of ILs are emerging everyday [14–19]. Apart from the fact that ILs are constituted of cations/anions and are still in the liquid state at the ambient, most of the recent investigations with ILs are driven by the possibility of their *potential* environmentally-benign nature; they possess almost negligible vapor pressure and can be recycled easily. As a consequence, it is logical to employ these ILs in concert with other environmentally-friendly systems such as, supercritical fluids [20–26], aqueous [27–34] and polymer [35–39] solutions, surfactant-based systems [40–51], etc.

The aqueous surfactant solutions comprising of micelles are very-well studied and are used as media in a variety of chemical analysis and synthesis [52–57]. Micellar systems have immense technological applications such as flow field regulators, solubilizing and emulsifying agents, membrane mimetic media, nanoreactors for enzymatic reactions, to name just a few [52–57]. Although efforts have been invested by many research groups including our own to study surfactant behavior and possibility of surfactant self-assembly within ILs [40–51], utilization of ILs to effectively and favorably alter/modify properties of dilute aqueous surfactant solutions is an appealing concept from both environmental and application points-of-view which is still unexplored [58].

In this paper, we report the alterations/modifications in the properties of dilute aqueous micellar solutions of a common nonionic surfactant Triton X-100 (TX-100, see structure in Scheme 1) upon addition of a popular 'hydrophobic' IL 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF₆, Scheme 1). Favorable modifications in the physicochemical properties of dilute aqueous micellar solutions upon addition

^{*} Corresponding author. Fax: +91 11 26581102.

E-mail address: sipandey@chemistry.iitd.ac.in (S. Pandey).

Scheme 1. Structures of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF₆) and surfactant Triton X-100 (TX-100).

of ILs will expand and enhance the overall capabilities and applications of aqueous surfactant solutions; utilization potential of ILs will increase as well.

2. Experimental

2.1. Materials

TX-100 [polyoxyethylene(10)octylphenyl ether, scintillation grade] was obtained from SISCO Research Laboratories and was used as received. IL bmimPF₆ (Merck, ultra pure, halide content <10 ppm, water content <10 ppm) was used as received. Doubly-distilled deionized water was obtained from a Millipore, Milli-Q Academic water purification system having $\ge 18 \text{ M}\Omega \text{ cm}$ resistivity. Following materials were used as received: methyl orange (MO, 4-[4-(dimethylamino)phenylazo]benzene sulfonic acid, sodium salt), pyrene (Py), and pyrene-1-carboxaldehyde (PyCHO) from Sigma-Aldrich, phenol blue (PB, N,N-dimethylindoaniline) and 2-(p-toluidino)naphthalene-6-sulfonate (TNS) from Acros Organics, N,N-diethyl-4-nitroaniline (DENA) from Frinton Laboratories, 6-propionyl-2-(dimethylamino)naphthalene (PRODAN) from Fluka, and 1,3-bis-(1-pyrenyl)propane from Molecular Probes. Ethanol (99.9%) was obtained from sd finechem. Ltd.

2.2. Methods

Required amounts of materials were weighed using Mettler Toledo AB104-S balance with a precision of ± 0.1 mg. Stock solutions of the absorbance and fluorescence probes were prepared in ethanol and stored in precleaned amber glass vials at $\sim\!\!4\,^\circ\text{C}$. TX-100 solutions were freshly prepared in doubly-distilled deionized water. Aqueous TX-100 solutions of the probes were prepared taking appropriate aliquots of the probes from the stock and evaporating ethanol using a gentle stream of high purity nitrogen gas. Aqueous TX-100 of desirable concentration was added to achieve required final probe concentration. Precalculated amount of IL bmimPF₆ was directly added to the aqueous TX-100 solutions.

Fluorescence spectra were acquired on model FL 3-11, Fluorolog-3 modular spectrofluorometer with single Czerny–Turner grating excitation and emission monochromators having 450 W Xe arc lamp as the excitation source and PMT as the de-

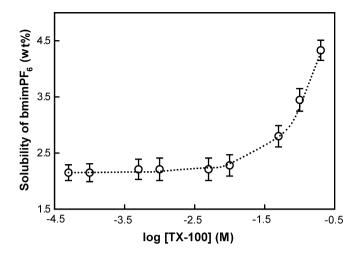


Fig. 1. Solubility of bmimPF₆ in aqueous TX-100 at ambient conditions.

tector purchased from Horiba-Jobin Yvon, Inc. A Perkin-Elmer Lambdabio 20 double beam spectrophotometer with variable band width was used for acquisition of the UV–vis molecular absorbance data. All the data were acquired using 1-cm² path length quartz cuvettes. Spectral response from appropriate blanks was subtracted before data analysis. All the measurements were taken in triplicate and averaged. Conductivity measurements were carried out on a CM-183 μp-based EC-TDS analyzer with ATC probe and conductivity cell (CC-03B) purchased from Elico Ltd., India. Solubility of bmimPF₆ in aqueous TX-100 was first ascertained from visual inspection followed by verification using UV–vis absorbance. All data analysis was performed using Microsoft Excel and SigmaPlot 8.0 software.

3. Results and discussion

3.1. Solubility of bmimPF₆ in aqueous TX-100

bmimPF₆ is generally considered a 'hydrophobic' IL with limited solubility in water (at ambient conditions, solubility of bmimPF₆ in water is ca. 2.1 wt%) [59-62]. This poses obvious restrictions on utilization of aqueous bmimPF₆ and, in turn, limits the potential applications of aqueous bmimPF₆. The presence of TX-100 in water may alter the solubility of bmimPF₆. The solubility of bmimPF₆ in aqueous TX-100 at ambient conditions is presented in Fig. 1. Interestingly, solubility of bmimPF₆ does not change significantly at lower [TX-100] ($<1 \times 10^{-4}$ M); in the range 1×10^{-4} –0.20 M however, the solubility (S) of bmimPF₆ in TX-100 can be predicted by a simple linear relation: $S = 11.1(\pm 0.5)[TX-100] +$ $2.2(\pm 0.1)$, $r^2 = 0.9923$. The solubility of bmimPF₆ in the complete range of [TX-100] fits to a rather simple mathematical relation with three parameters: $S = 2.15(\pm 0.05) +$ $8.62(\pm 0.69) \exp[X/0.51(\pm 0.03)]$, where $X = \log[TX-100]$.

The increase in solubility of bmimPF₆ in the presence of TX-100 in water may be attributed to the following two factors. Cations and/or anions of IL bmimPF₆ may be associating with TX-100 (perhaps through ion–dipole interactions) or bmimPF₆

Download English Version:

https://daneshyari.com/en/article/612536

Download Persian Version:

https://daneshyari.com/article/612536

<u>Daneshyari.com</u>