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Abstract

Here, we derive analytical asymptotic expressions for the dynamic surface tension of ionic surfactant solutions in the general case of nonsta-
tionary interfacial expansion. Because the diffusion layer is much wider than the electric double layer, the equations contain a small parameter.
The resulting perturbation problem is singular and it is solved by means of the method of matched asymptotic expansions. The derived general
expression for the dynamic surface tension is simplified for the special case of immobile interface and for the maximum bubble pressure method
(MBPM). The case of stationary interfacial expansion is also considered. The effective diffusivity of the ionic surfactant essentially depends on
the concentrations of surfactant and nonamphiphilic salt. To test the theory, the derived equations are applied to calculate the surfactant adsorption
from MBPM experimental data. The results excellently agree with the adsorption determined independently from equilibrium surface-tension
isotherms. The derived theoretical expressions could find application for interpreting data obtained by MBPM and other experimental methods
for investigating interfacial dynamics.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the case of ionic surfactants, the existence of a dif-
fuse electric double layer essentially influences the thermo-
dynamics and kinetics of adsorption. The process of adsorp-
tion is accompanied with a progressive increase of the surface
charge density and electric potential. The charged surface re-
pels the new-coming surfactant molecules, which results in
a deceleration of the adsorption process [1,2]. The theoreti-
cal studies on dynamics of adsorption encounter difficulties
with the nonlinear set of partial differential equations, which
describes the electro-diffusion process. The quasi-equilibrium
model developed by Dukhin et al. [3–6] employs the sim-
plifying assumption that the characteristic diffusion time is
much greater than the time of formation of the electric dou-
ble layer, and then the electro-diffusion process is modeled
as a process of mixed barrier-diffusion control. Similar ap-
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proach is followed by Borwankar and Wasan [7]. The solution
of the problem for the case of small periodic surface pertur-
bations, like those observed with the oscillating bubble tech-
nique [8,9], was obtained by Bonfillon and Langevin [10];
the results were applied to interpret data obtained by means
of the longitudinal-wave method for adsorption monolayers of
ionic surfactant. McLeod and Radke [11] obtained numerical
solutions of the electro-diffusion problem, thus avoiding the
simplifying assumptions of the quasi-equilibrium model. Such
numerical solutions are mathematically rigorous, but they are
time-consuming when applied to process experimental data.
The analysis in Ref. [11] was extended by Datwani and Stebe
[12] in the electrostatic limit. Their model considers the cases
of diffusion control and adsorption–desorption kinetic barri-
ers [12].

Analytical theories of the relaxation of surface tension of
a quiescent interface have been proposed for the cases of no
added electrolyte [13], small [14], and large [15] deviations
from equilibrium. Ferri et al. [16] analyzed the effect of in-
terfacial curvature on the adsorption at the surface of pendant
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bubbles and compared numerical solutions, asymptotic expres-
sions and experimental data. The adsorption dynamics in the
case of stationary expansion of a fluid interface has been also
investigated [17]. In some of these studies [13,14,17], the ad-
sorption (binding) of counterions at the conversely charged
surfactant headgroups in the adsorption layer was taken into
account. The bound counterions affect strongly the adsorption
kinetics insofar as up to 70–90% of the surface electric charge
could be neutralized by them [18–20]. Thus, it turns out that in
the case of ionic surfactants (with or without added salt) there
are two adsorbing species: the surfactant ions and the counter-
ions.

In the simpler case of nonionic surfactants, and for a surface,
which had been initially disturbed and after that it was immo-
bile during the whole process of surfactant adsorption, Hansen
[21] derived the following expression for the time dependence
of the subsurface surfactant concentration, c1s(t):

(1.1)c1s = c1∞ − Γ1,eq − Γ 0
1

(πD1t)1/2
,

where t is time; c1∞ is the bulk surfactant concentration; Γ 0
1

and Γ1,eq are, respectively, the initial and equilibrium surfac-
tant adsorptions; D1 is the diffusion coefficient of the surfactant
molecules. Equation (1.1) is applicable for surfactant concen-
trations lower than the critical micelle concentration (CMC).
The validity of the Hansen asymptotic formula, Eq. (1.1), was
confirmed in [22,23]. For small deviations from equilibrium,
one could use the Gibbs adsorption equation:

(1.2)γ − γeq = −kT Γ1,eq
c1s − c1∞

c1∞
,

where γeq is the equilibrium surface tension; k is the Boltz-
mann constant, and T is the absolute temperature. Combining
Eqs. (1.1) and (1.2), we obtain

(1.3)γ = γeq + sγ,0

t1/2
,

(1.4)sγ,0 ≡ kT Γ 2
1,eq

(πD1)1/2c1∞
.

sγ,0 is the slope parameter for an immobile interface; at the last
step we have used the assumption Γ0 � Γeq.

Here, our aim is to generalize Eqs. (1.3) and (1.4) in two
respects: (i) for ionic surfactants in the presence or absence
of added electrolyte, and (ii) for an expanding fluid inter-
face, like that realized with the maximum bubble pressure
method (MBPM) [24–26], expanding drop method [27–29],
the strip method [30,31], and the overflowing cylinder method
[17,32–35]. (The γ (t) dependence for immobile interfaces can
be deduced as a special case.) In particular, we will show that
in the case of MBPM, the generalization of Eqs. (1.3) and (1.4)
reads:

(1.5)γ = γeq + sγ

(tage)1/2
,

(1.6)sγ ≡ kT Γ 2
1,eqλ

(πDeff)1/2γ±

(
1

c1∞
+ 1

c2∞

)
,

where tage is the bubble surface age, i.e., the period of time
between the minimum pressure (at bubble formation) and the
maximum pressure (before bubble detachment); λ is a dimen-
sionless constant of the MBPM apparatus that can be deter-
mined in calibration experiments [36]; c2∞ is the bulk concen-
tration of counterions; γ± is the activity coefficient; Deff is an
effective diffusivity that depends on the concentrations of sur-
factant and salt, and is defined by Eqs. (6.16)–(6.23) below. It
is established that Eqs. (1.5) and (1.6) provide exact quantita-
tive interpretation of MBPM experimental data; see Section 8
for details.

The paper is structured as follows. In Sections 2 and 3 we
formulate the basic equations, introduce appropriate dimen-
sionless variables. In Sections 4 and 5 we consider the two
asymptotic regions: the relatively narrow electric double layer
near the interface and the much wider diffusion layer. In Sec-
tions 6 and 7 we derive and discuss the expressions for the
dynamic surface tension in the cases of nonstationary and sta-
tionary interfacial expansion. Finally, in Section 8 we test the
derived theoretical expressions by comparison with experimen-
tal data obtained by means of the maximum bubble pressure
method.

2. Formulation of the diffusion problem

We consider adsorption from the solution of an ionic surfac-
tant in the presence of added nonamphiphilic electrolyte (salt).
For simplicity, we assume that the counterions due to the sur-
factant and salt are the same. Thus, the solution contains three
components, which will be denoted as follows: 1—surfactant
ions; 2—counterions, and 3—coions. For example, in Section 8
we consider solutions of sodium dodecyl sulfate (SDS) + added
NaCl, for which component 1 is DS−, component 2 is Na+, and
component 3 is Cl−. Because of the electroneutrality of the so-
lution, the bulk concentrations of the three ionic species, c1∞,
c2∞, and c3∞, are related:

(2.1)c2∞ = c1∞ + c3∞.

Furthermore, we assume that the valence of the surfactant ions
and coions is Z, while the valence of the counterions is −Z.
Because of the adsorption of charged surfactant molecules,
an electric double layer appears near the surface of the so-
lution [37]. The electric potential of the double layer will be
denoted by ψ . It is convenient to introduce the dimensionless
electric potential, Φ = Zeψ/(kT ), where e is the electronic
charge; because Z and ψ have the same sign, we have Φ � 0.

Let us consider a flat interface that is subjected to dilatation
with expansion rate:

(2.2)α̇(t) ≡ 1

A

dA

dt
.

Here, t is time and A(t) is the interfacial area. Let x be coor-
dinate normal to the interface and x = 0 at the interface, see
Fig. 1. Because of the adsorption process, the concentrations
of the ionic species and the electric potential are functions of
the spatial coordinate and time: c1(x, t), c2(x, t), c3(x, t), and
Φ(x, t). The latter four functions can be determined from the
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