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Bioinformatics looks to many microbiologists like a service

industry. In this view, annotation starts with what is known from

experiments in the lab, makes reasonable inferences of which

genes match other genes in function, builds databases to make

all that we know accessible, but creates nothing truly new.

Experiments lead, then biocuration and computational biology

follow. But the astounding success of genome sequencing is

changing the annotation paradigm. Every genome sequenced

is an intercepted coded message from the microbial world, and

as all cryptographers know, it is easier to decode a thousand

messages than a single message. Some biology is best

discovered not by phenomenology, but by decoding genome

content, forming hypotheses, and doing the first few rounds of

validation computationally. Through such reasoning, a role and

function may be assigned to a protein with no sequence

similarity to any protein yet studied. Experimentation can follow

after the discovery to cement and to extend the findings.

Unfortunately, this approach remains so unfamiliar to most

bench scientists that lab work and comparative genomics

typically segregate to different teams working on unconnected

projects. This review will discuss several themes in

comparative genomics as a discovery method, including highly

derived data, use of patterns of design to reason by analogy,

and in silico testing of computationally generated hypotheses.
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Introduction
In the classic problem in genome annotation, sequence is

linked to function directly by experiment for just one or

two model proteins. In each newly sequenced genome, it

must be decided whether the closest homolog to such an

exemplar performs the same function, or does something

different. What method should be used to decide whether

the new sequence should receive the same functional

annotation? In some homology families, all members out

to the limits of detection perform the same function. In

others, function diverges rapidly once identity falls below

60% [1]. Any blanket rule that relies on fixed criteria for

propagating functional annotation from the proven to the

unproven is bound to perform badly. Each protein family

is different, necessitating different cutoffs. The most

similar sequences by BLAST do not always match those

closest by recent common ancestry [2]. For most families,

in fact, no BLAST score cutoff could separate the func-

tionally equivalent homologs from all other proteins; the

two sets interleave. Consequently, missed annotation and

misannotation both run rampant in public databases, with

overly specific annotation an especially troublesome

symptom [3]. Approaches that make one bold computa-

tional leap per annotation simply cannot perform well.

The best approach to high quality annotation is an incre-

mental process that advances through large numbers of

very modest assumptions. Continual testing that newly

assigned annotations in a protein family remain consistent

with each protein’s species of origin, inferred metabolic

background, and neighborhood of adjacent or nearby genes

keeps confidence in the annotation process high. One or

two characterizations of a histidine biosynthesis enzyme,

for example, may suffice to show a typical histidine operon

structure, bring up many more sequences from similar

contexts, generate multiple sequence alignments and phy-

logenetic trees, and lead eventually to an almost perfect

classifier with near zero false positives and false negatives

over all genomes sequenced to date. The resulting entry in

the protein family definition database, with its hidden

Markov model (HMM) [4] based on a curated seed align-

ment, together with its cutoff score, and its set of annota-

tions to transfer, becomes a fully automated tool that

emulates what the expert biocurator would do, in theory,

if asked to annotate the same target gene.

Reasoning through large numbers of small assumptions

may seem unreasonable to the protein chemist trained to

expect a progressive loss of yield with every additional

step. A 500-step protein purification probably would yield

very little. But biocuration resembles fitting together a

500-piece jigsaw puzzle rather than purifying a protein. It

is true that placing each new piece requires one more new

hypothesis, but the fact that the piece fits at all gives

strong validation that clears lingering doubt from earlier

stages. Once the puzzle is completed, a picture emerges

whose obvious self-consistency gives robust confirmation

that most or all pieces were placed correctly.
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Derived data
The currency for reasoning by comparative genomics to

infer molecular functions and biological processes con-

sists mostly of highly derived data, often very far removed

from the lists of which specific protein sequences have

had which functions proven in the lab [5]. We use HMM-

based classifications of proteins into families to tell what

enzymes are present in a microbe, then combinations of

these assignments to assert that an enzymatic pathway or

other subsystem is complete, or else completely absent,

for any given genome. These assertions are used in turn

to generate a list of 1s and 0s, called a phylogenetic

profile, to show which species have a given marker, or

a whole subsystem, and which do not. Examples of

additional highly derived data types include: the list of

a genomes with the same apparent hole in an enzymatic

pathway, predictions by metabolic modeling that a list of

genes all are essential, the list of all species that carry one

marker but not another, phylogenetic trees calculated

from multiple sequence alignments, inferred gene du-

plication and gene loss events, domain structures of

proteins, predicted signal peptides and transmembrane

helices, conserved gene neighborhoods, conserved gene

order, or matters as simple as finding where members of

two selected protein families are encoded by adjacent

genes. Each of these types of observation, far removed

from typical laboratory experimental measures of protein

activity, can lead annotators to clearer pictures of protein

function.

High-dimensional data
Collections of complete genomes contain intrinsically

high-dimensional data. Numerous data types each reflect

on some aspect of a protein family’s biology that other

methods cannot assess. Mutation rates inferred from a

molecular phylogenetic tree, which regions of sequence

are best conserved and where the few invariant residues

map on the most closely related crystal structure, the

frequencies of gene loss, gene duplication, and lateral

gene transfer, the conservation of gene neighborhoods

and gene order within those neighborhoods, the lists of

cofactors synthesized in species with a member of that

protein family, the functions of most closely related

sequences known to differ in function, which additional

markers occur in the same genomes as the family in

question and which markers never do, where microbes

with the family live, and many other traits carry informa-

tion that might support a theory of what some protein’s

role and function might be, or might refute it.

The high-dimensionality of comparative genomics data

means bioinformatics can deliver a range of metrics that

have a high degree of statistical independence. A detailed

hypothesis about the workings of a putative new system,

based on analogy to some known system, might lead to a

number predictions that should all be jointly true. If the

first suggestive finding is a mere statistical anomaly, and

not true evidence for the biology proposed, the various

other metrics will not lend support. The hypothesis can

be dropped. But if multiple statistical measures of inde-

pendent facets of a proposed biological system are con-

firmed, the hypothesized new system may become

strongly supported well before the first new ‘wet lab’

experiment is performed.

Bioinformatics journeys
We suggest the term ‘bioinformatics journey’ to describe a

code-breaking exercise in comparative genomics that

starts with some (possibly weak) hypothesis, and by

progressively filling in the biological picture, manages

to deliver a richly detailed scenario that merits strong

confidence for many of its predictions. For example, two

proteins are weakly similar, and might be proposed to

belong to some still-undefined homology family. Once a

sufficient set of true homologs has been collected and

shown in a multiple sequence alignment, the hypothesis

of homology (descent from a common ancestor) becomes

iron-clad. If any members of the seed alignment are

removed, an HMM based on the remainder could easily

recover them — a powerful form of cross-validation. PSI-

BLAST [6] makes this kind of journey almost routine.

Meanwhile, the outcome of a bioinformatics journey such

as a definition of a new homology domain can provide new

information. For example, the multiple sequence align-

ment may reveal motifs of strong local sequence similari-

ty, an emergent property not apparent in individual

pairwise alignments, to show which types of residues in

a protein family are most conserved and thus give clues to

what the general molecular function might be.

If the nature of a biological question is favorable for

computational analysis, then a hypothesis made in silico
will have important implications that can be tested with-

out recourse to new experiments. Sometimes this means

applying purely computational tests. Sometimes this

means validation in the rear view mirror, locating an

old published report whose results suddenly merit a

new interpretation. The C-terminal region of the S-layer

glycoprotein of halophilic archaea is a homology domain,

the PGF-CTERM domain, and it invariably co-occurs in

genomes with archaeosortase A, which was proposed to

be an enzyme that cleaves and removes such regions [7].

The PGF-CTERM has a highly hydrophobic transmem-

brane alpha-helix, sufficient to anchor a protein to the

membrane. Why anchor a protein at its C-terminus only to

cleave that anchor? A much earlier finding was that a

prenyl-derived lipid moiety, large enough to serve as a

membrane anchor, was added to this S-layer glycoprotein,

somewhere near its C-terminus, but that finding too was

odd — why give a surface protein a second, redundant

C-terminal membrane anchor [8]? In light of the discov-

ery of archaeosortase, attaching a large lipid group sud-

denly makes sense, not as redundant anchor to the

membrane, but as a replacement. Archaeosortase could
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