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Abstract

The dynamic mobility of a spherical dispersion of soft particles, where a particle comprises a rigid core and a membrane layer, is evaluated
for the case when the shear stress across the membrane layer–liquid interface is discontinuous, the so-called stress-jump condition. We show that,
due to the effect of double-layer deformation, the magnitude of the dynamic mobility of a particle has a local maximum and the corresponding
phase angle has a negative (phase lead) local minimum at a low to medium level of the frequency of the applied electric field. This effect becomes
insignificant if the frequency of the applied electric field is sufficiently high. The stress-jump condition may lead to a significant influence on the
drag, and consequently the mobility of a particle. The degree of influence depends upon the sign of the stress-jump coefficient and the charged
conditions of the membrane layer of the particle.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Owing to their potential applications, such as the estimation
of the surface potential of a colloidal entity in a concentrated
dispersion, electroacoustic phenomena have drawn the attention
of colloidal scientists in recent years. These phenomena include
two reversal effects: applying a supersonic wave to a colloidal
dispersion and measuring the responding vibration potential,
and applying an alternating electric field and detecting the re-
sponding supersonic wave [1]. Several theoretical attempts have
been made in the past decade to model electroacoustic phenom-
ena [2–10]. The key factors considered in these studies include
the level of the surface potential of a particle, the thickness
of the double layer surrounding a particle, the concentration
of particles, and the, types of boundary conditions assumed.
Compared with the response of a colloidal dispersion to a sta-
tic applied electric field, the response of a dynamic applied
electric field is much more complicated. For instance, the elec-
trophoretic velocity of a particle may not synchronize with the
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applied electric field; both phase lag and phase lead may be ob-
served. Also, depending upon the operating conditions, both the
magnitude and the phase angle of the electrophoretic velocity of
a particle can have a complicated relation with the frequency of
the applied electric field.

Previous analyses of electroacoustic phenomena all focused
on dispersions of rigid entities. While particles of a rigid na-
ture are common, those of nonrigid nature are also of practical
significance. Biocolloids such as biological cells and microor-
ganisms, for instance, belong to this category, in that their
surfaces can be penetrable to ionic species. A so-called soft
particle [11–14], where a particle comprises a rigid core and
an ion-penetrable membrane layer, is often adopted to simu-
late these types of particles. Available results for the behavior
of a soft particle when an alternating electric field is applied
are very limited. Under conditions of low particle concentra-
tion, thick membrane layer, and thin double layer, Ohshima
[15] was able to derive an analytical expression for the dy-
namic electrophoretic mobility of a soft particle. Lopez-Garcia
et al. [16] proposed a numerical procedure to solve the problem
of Ohshima; an extra hydrodynamic force acting on the rigid
core of a particle was considered. In the mathematical treatment
of these analyses, it was assumed that both the fluid velocity
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and its shear stress are continuous across the membrane layer–
liquid interface. In a study of the flow field involving a porous
medium, Ochoa-Tapia and Whitaker [17,18] were able to show
that while the former is appropriate, the latter needs modifica-
tion. A stress-jump condition, characterized by a stress-jump
coefficient, was proposed to describe the shear stress across the
porous medium–liquid interface. Their treatment was found to
be more convincing than the empirical relation proposed by
Beavers and Joseph [19]. Follow-up studies [20–22] also re-
vealed that the introduction of a stress-jump condition for the
description of the nature of the shear stress across a porous
medium–liquid interface is necessary. Sekhar and Sano [21]
suggested that the stress-jump coefficient ranges approximately
from −0.9 to 0.9.

In this study the electrophoresis of a spherical dispersion
of soft particles, where a particle comprises a rigid core and
an ion-penetrable membrane layer, subject to an alternating
electric field is analyzed. In particular, the influence of the dis-
continuity in the shear stress across the membrane layer–liquid
interface on the electrophoretic behavior of a dispersion is in-
vestigated. The dynamic electrophoretic mobility of a particle
characterized by its magnitude and phase angle is evaluated un-
der various conditions.

2. Theory

Let us consider the dynamic electrophoresis of a spheri-
cal dispersion of soft particles, where a particle comprises a
rigid core of radius a and a membrane layer of thickness d .
The dispersion medium contains z1:z2 electrolyte; z1 and z2
are respectively the valence of cations and that of anions with
z2 = −αz1. Referring to Fig. 1, the unit cell model of Kuwabara
[23] is adopted, where the dispersion is simulated by a represen-
tative particle and a concentric spherical liquid shell of radius c.
Let b = a + d and H = (b/c)3; the latter is a measure for the
volume fraction of particles. The spherical coordinates (r, θ,ϕ)

are adopted with origin located at the center of the particle.
E = EZe−iωtez is the applied electric field, where ez is the unit
vector in the z-direction, t is the time, ω is the frequency of E,
and i = √−1. U = Ue−iωtez = UR + iUI is the electrophoretic
velocity of the particle; UR and UI are respectively the real and
the imaginary parts of U. For the present case the electric po-
tential φ can be described by the Poisson equation

(1)∇2φ = −ρ + �ρfix

ε
,

where ρ = ∑
j nj zj ê and ρfix are respectively the space density

of mobile ions and the fixed-charge density in the membrane
layer, ∇ is the gradient operator, ê and ε are respectively the el-
ementary charge and the permittivity of the liquid phase, nj and
zj are respectively the concentration and the valence of ionic
species j , and � is a region index, � = 1 for a < r < b, and
� = 0 for b < r < c. We assume that both ε and ρfix are con-
stant.

The conservation of the j th ionic species leads to

(2)
∂nj

∂t
= Dj

[
∇2nj + zj e

kT

(∇nj · ∇φ + nj∇2φ
)] − ∇nj · v,

Fig. 1. A spherical dispersion of soft particles, where a particle comprises a
rigid core of radius a and a membrane layer of thickness d , is simulated by
a unit cell model where a cell comprises a representative particle and a con-
centric spherical liquid shell of radius c. The spherical coordinates (r, θ,ϕ) are
adopted with origin located at the center of the representative particle. E and U
are respectively the applied electric field and the electrophoretic velocity of a
particle.

where Dj is the diffusivity of ionic species j , k is the Boltz-
mann constant, T is the absolute temperature, and v is the liquid
velocity.

If we assume that the liquid phase is an incompressible New-
tonian fluid with constant physical properties, then the flow
field can be described by

(3)∇ · v = 0,

(4)ρf
∂v
∂t

− ∇p + η∇2v − ρ∇φ − �γ v = 0,

where p is the pressure, η and ρf are respectively the viscosity
and the density of the liquid phase, and γ is a friction coefficient
characterizing the flow of liquid in the membrane layer.

For convenience, φ, nj , v, and p are all decomposed into an
equilibrium term and a perturbed term. That is,

(5)φ(r, θ, t) = φe(r) + δφ(r, θ)Eze
−iωt ,

(6)nj (r, θ, t) = ne
j (r, θ) + δnj (r, θ)Eze

−iωt ,

(7)v(r, θ, t) = ve + δv(r, θ)Eze
−iωt ,

(8)p(r, θ, t) = pe(r, θ) + δp(r, θ)EZe−iωt .

The subscript and superscript e in these expressions repre-
sents equilibrium properties, and δ denotes a perturbed prop-
erty. Note that since the liquid phase remains stagnant in the
absence of E, we must have ∇pe = 0 and ve = 0; pe and ve are
respectively the equilibrium pressure and the equilibrium liquid
velocity. Substituting Eqs. (5)–(8) into Eqs. (1)–(4) leads to two
subproblems, one for the equilibrium system and the other for
the perturbed system.
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