ELSEVIER

Contents lists available at ScienceDirect

Microbial Pathogenesis

journal homepage: www.elsevier.com/locate/micpath

Short communication

MspA-Mycobacterium tuberculosis-transformant with reduced virulence: The "unbirthday paradigm"

Otmane Lamrabet, Eric Ghigo, Jean-Louis Mège, Hubert Lepidi, Claude Nappez, Didier Raoult, Michel Drancourt*

Aix Marseille Université, URMITE, UM63, CNRS UMR7278, IRD 198, Inserm 1095, 13005 Marseille, France

ARTICLE INFO

Article history:
Received 11 April 2014
Received in revised form
7 August 2014
Accepted 18 August 2014
Available online 3 September 2014

Keywords:
Mycobacterium tuberculosis
Virulence
Vaccine
Porin
MspA
Mycobacterium smegmatis

ABSTRACT

Expressing mspA porin gene from Mycobacterium smegmatis in Mycobacterium tuberculosis attenuated this pathogen. Intracellular growth of the transformants into free-living amoeba and murine and human macrophages decreased. Furthermore, transformants decreased the microbicidal program of human monocyte-derived macrophages. BALB/c mice inoculated with transformants exhibited higher weights, lower histological lesions and lower M. tuberculosis inoculum in the liver, spleen and lungs than control mice challenged with wild-type M. tuberculosis. Preliminary evaluation indicated that mice inoculated with this transformant showed higher weights and lower numbers of lung nodules and tissular mycobacteria than control mice when challenged with wild-type M. tuberculosis. Similar to the paradoxical "unbirthday" gift coined by Lewis Carroll in Alice's Adventures in Wonderland, adding mspA gene reduced the virulence of M. tuberculosis and yielded a protective effect. Lost of non-virulence genes is a mechanism for virulence in mycobacteria. Engineering non-virulence genes in M. tuberculosis may yield strains with decreased virulence and increased immunogenicity.

1. Introduction

Since the seminal work of Louis Pasteur on *Pasteurella multocida* "attenuation" through axenic culture, most living vaccines, such as Bacille Calmettes Guérin (BCG), have been obtained through genome reduction via *in vitro* culture. This gave birth to a major paradigm in bacteriology suggesting that pathogenic bacteria acquire specific virulence genes clustered in so-called pathogenicity islands through lateral gene transfer to become virulent [1–4]. The virulence factors described in the facultative intracellular pathogens *Shigella* [5,6], *Salmonella* [3], *Listeria monocytogenes* [7] and *Brucella abortus* [8] affect various steps of bacteria-host cell interactions, including adhesion, penetration, survival and intracellular multiplication to mediate bacterial escape from host immune responses [1–9].

As a consequence of virulence gene acquisitions, pathogens should exhibit a trend towards increased genome size. However, neutral post-genomic observations have shown that pathogens have smaller genomes than their non-pathogenic counterparts [10,11]. This phenomenon is particularly obvious for *Rickettsia* and *Mycobacterium* species [12,13]. Despite such evidence, the current concept for virulence of the tuberculosis agent *M. tuberculosis* is that it acquired specific virulence genes by horizontal gene transfer [14].

Recently, it was discovered that harmless organisms harbored non-virulence genes, i.e. genes whose expression decreases or suppresses the virulence of a pathogen and, as a consequence, must be turned-off or deleted in pathogens. For example, the pathogenic *Shigella sonnei* [15] and *Yersinia pestis* [16] lack the lysine decarboxylase gene present in harmless, closely related *Escherichia coli*. In mycobacteria, it was shown that MspA, the major outer membrane porin (OmpA) of rapidly-growing *Mycobacterium smegmatis*, was absent in slow-growing pathogenic mycobacteria, including *M. tuberculosis* [17,18]. In *M. smegmatis*, MspA constitutes a central pore for hydrophilic solutes [17,19] which renders *M. smegmatis* susceptible to nitric oxide [20]. Accordingly, its deletion increases the survival of *M. smegmatis* in macrophages [20].

Here, we hypothesized that MspA could be a non-virulence gene in *M. tuberculosis* which acquisition would decrease pathogenicity in *M. tuberculosis*, referring to this concept as the "unbirthday

^{*} Corresponding author. URMITE, UMR CNRS 7278, IRD 198, INSERM U1095 Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France. Tel.: +33 4 91 38 55 17; fax: +33 4 91 38 77 72.

E-mail addresses: otmanelamrabet@gmail.com (O. Lamrabet), eric.ghigo@univ-amu.fr (E. Ghigo), jean-louis.mege@univ-amu.fr (J.-L. Mège), hubert.lepidi@univ-amu.fr (H. Lepidi), claude.nappez@univ-amu.fr (C. Nappez), didier.raoult@gmail.com (D. Raoult), michel.drancourt@univ-amu.fr (M. Drancourt).

hypothesis," modeled after the increased benefits of paradoxically receiving more presents for non-birthdays instead of a birthday, as explained to Lewis Carroll's character Alice in Alice's Adventures in Wonderland [21]. We expressed the *M. smegmatis mspA* gene in *Mycobacterium bovis* BCG [22,23] and *M. tuberculosis* [24] to expand the genomic content of both bacteria and evaluate the behavior and virulence of these bacteria using several in-vitro and in-vivo approaches. The results show that expanding the genomic content of *M. tuberculosis* attenuates the virulence of this pathogen.

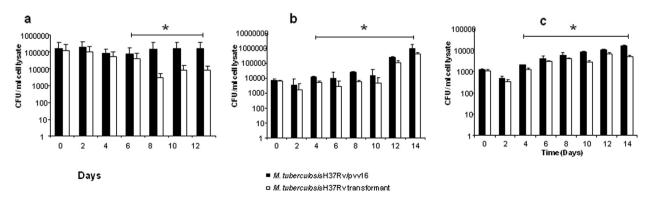
2. Results

2.1. Transformation of mycobacteria with the putative non-virulence gene

A 636-base pair (bp) DNA fragment, containing mspA, was PCRamplified from the M. smegmatis mc2 155 strain and cloned into the 5792-bp plasmid pVV16 under the control of the hsp60 promoter. Sequencing the insert revealed no amino acid replacement in mspA. After the electroporation of the transformed and control plasmids into the M. bovis BCG Tokyo (BCG) and M. tuberculosis H37Rv strains, the presence of mspA-positive transformants was verified through PCR and RT-PCR using specific primers (Supplementary Table 1) (Supplementary Fig. 1, Supplementary Figs. 2a-b). MspA is a heat-stable porin23: therefore, after selective protein extraction at a high temperature, sodium dodecyl sulfate (SDS)PAGE was performed and showed a clear signal characteristic of the tetrameric form of MspA [25,26] in extracts from smegmatis BCG and M. tuberculosis transformants (Supplementary Fig. 2c). However, these signals were not observed in BCG and M. tuberculosis controls. The monomeric form of MspA (~20 kDa) was further observed in extracts from M. smegmatis and transformants after heating the tetrameric protein in 80% dimethyl sulfoxide (DMSO) at 100 °C (Supplementary Fig. 2d). After gel extraction, the proteins spots were identified as M. smegmatis MspA with 21% sequence coverage and 29% sequence similarity. We therefore verified the expression of this putative non-virulence gene in BCG and M. tuberculosis transformants.

2.2. The putative non-virulence gene decreases intracellular growth

After four days co-culture with the amoeba *Acanthamoeba polyphaga*, the number of viable BCG transformants was significantly smaller than that of the controls ($p \le 0.05$) (Supplementary Fig. 3b). On day 12, the number of colony-forming units (cfu) for the BCG transformants was 10 \pm 3 compared with 95 \pm 9 for the controls


($p \le 0.05$) (Supplementary Fig. 3b). Similarly, after eight days coculture, the number of M. tuberculosis transformants was significantly smaller than that of the controls ($p \le 0.05$). On day 12, the number of cfu for the transformants was $2 \times 10^5 \pm 6 \times 10^4$ versus $8 \times 10^3 \pm 5 \times 10^3$ for the controls (Fig. 1a).

In the bone marrow-derived macrophages (BMDMs) co-culture, the survival of the transformants was significantly lower than that of the controls ($p \le 0.05$) (Supplementary Figs. 3c and 1b). On day 14, the number of cfu was $1 \times 10^7 \pm 6 \times 10^6$ for the BCG transformants and $3 \times 10^8 \pm 7 \times 10^7$ for the controls, and $4 \times 10^5 \pm 1 \times 10^5$ cfu were observed for the *M. tuberculosis* transformants versus $1 \times 10^6 \pm 7 \times 10^5$ cfu for the controls.

In co-culture with human macrophages derived from blood monocytes (hMdMs), the survival of BCG and *M. tuberculosis* transformants was significantly lower than that of the controls ($p \le 0.05$). On day 14, we recovered $1 \times 10^6 \pm 1 \times 10^5$ cfu for the BCG transformants versus $5 \times 10^6 \pm 3 \times 10^5$ cfu for the controls (Supplementary Fig. 3d). As for *M. tuberculosis*, on day 14, we obtained $5 \times 10^3 \pm 7 \times 10^2$ cfu for the transformants and $2 \times 10^4 \pm 2 \times 10^3$ cfu for the controls (Fig. 1c).

2.3. The putative non-virulence gene disarms microbicidal program in macrophages

We used high-throughput approach based on whole genome microarray to investigate the activation pattern in response to wildtype and transformant M. tuberculosis. PCA analysis revealed that both strains of M. tuberculosis induced a transcriptional pattern markedly distinct from unstimulated monocyte-derived macrophages (MDMs); the differences between wild-type and transformants, were lower than those between both strains of M. tuberculosis and control cells (Fig. 2A). The hierarchical clustering confirmed that M. tuberculosis-stimulated cells were present in a cluster different from unstimulated cells. Among stimulated cells, the patterns of wild-type- and transformants-stimulated cells were on two different branches of the dendogram (Fig. 2B). Using Venn diagrams, we identified a core response to M. tuberculosis that consisted of 572 genes (473 up-modulated and 99 downmodulated genes). We identified a specific signature for M. tuberculosis in which responses to wild-type and transformants were differently enriched. We found a greater enrichment with down-modulated genes in responses to the transformant; in contrast wild-type response was poorly enriched (Fig. 2C). Hence, while core response markedly consisted of up-modulated genes, the specific response to transformants was made of downmodulated genes.

Fig. 1. Intracellular fate of *M. tuberculosis* H37Rv in different eukaryotic hosts. Colony-forming unit estimates for *M. tuberculosis* H37Rv/pVV16 and *M. tuberculosis* H37Rv/pVV16 and *M. tuberculosis* H37Rv/pVV16 and hMdM (c). The data points represent the means of triplicate wells, and the standard errors are represented using error bars. Statistically significant differences are indicated by asterisk * (p < 0.05).

Download English Version:

https://daneshyari.com/en/article/6136262

Download Persian Version:

https://daneshyari.com/article/6136262

<u>Daneshyari.com</u>