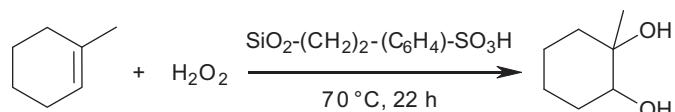

Journal of Catalysis Vol. 294, 2012

## Contents

**Mechanistic insight into the cyclohexene epoxidation with  $\text{VO}(\text{acac})_2$  and *tert*-butyl hydroperoxide**

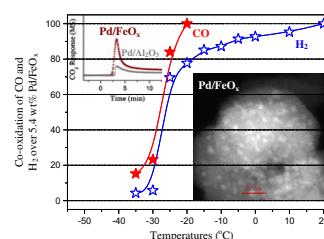

pp 1–18

Matthias Vandichel, Karen Leus, Pascal Van Der Voort, Michel Waroquier\*, Veronique Van Speybroeck\*

**Oxidation of alkenes to 1,2-diols: FT-IR and UV studies of silica-supported sulfonic acid catalysts and their interaction with  $\text{H}_2\text{O}$  and  $\text{H}_2\text{O}_2$** 

pp 19–28

Raimondo Maggi\*, Gianmario Martra, Calogero Giancarlo Piscopo, Gabriele Alberto, Giovanni Sartori

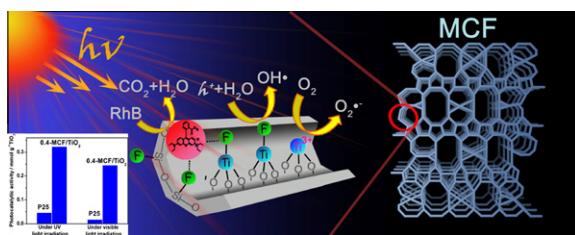



Supported sulfonic acids efficiently catalyzed the 1-methylcyclohexene dihydroxylation with aqueous hydrogen peroxide, without the use of additional solvents, under mild condition. Results of catalytic efficiency and spectroscopy data allowed to advance some hypothesis on the reaction mechanism.

**Catalytic co-oxidation of CO and  $\text{H}_2$  over  $\text{FeO}_x$ -supported Pd catalyst at low temperatures**

pp 29–36

Lequan Liu, Botao Qiao, Yude He, Feng Zhou, Benqun Yang, Youquan Deng\*

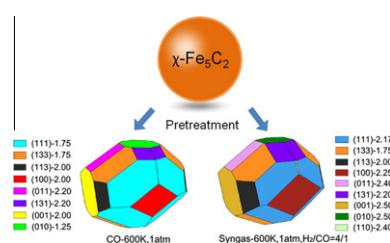



Co-oxidation of CO and  $\text{H}_2$  or oxidation of  $\text{H}_2$  in the presence of CO was achieved at low temperatures (0–20 °C) over single-component catalysts (Pd/FeO<sub>x</sub>) at a space velocity of 15,000 ml g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup>. Based on a systematical characterization study, it is speculated that highly dispersed Pd nano particles and FeO<sub>x</sub> support supplying active oxygen which is involved in oxidations are the key factors for excellent performance of Pd/FeO<sub>x</sub> for co-oxidation of CO and  $\text{H}_2$  at low temperatures.

**Super-hydrophobic fluorination mesoporous MCF/TiO<sub>2</sub> composite as a high-performance photocatalyst**

pp 37–46

Mingyang Xing, Dianyu Qi, Jinlong Zhang\*, Feng Chen, Baozhu Tian, Segomotsu Bagwas, Masakazu Anpo

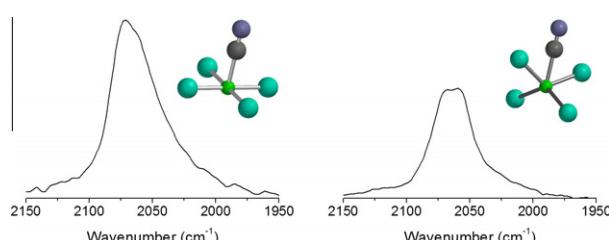



NH<sub>4</sub>F was used as hydrophobic modifier to synthesize the superhydrophobic mesocellular foams loaded with TiO<sub>2</sub> photocatalyst, which could be considered as an extractant for organics and a high-performance photocatalyst.

**Surface morphology of Hägg iron carbide ( $\chi$ -Fe<sub>5</sub>C<sub>2</sub>) from *ab initio* atomistic thermodynamics**

pp 47–53

Shu Zhao, Xing-Wu Liu, Chun-Fang Huo, Yong-Wang Li, Jianguo Wang, Haijun Jiao\*

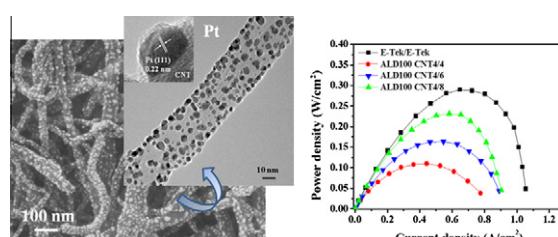



*Ab initio* simulations demonstrate that the surface facetting of the most common iron carbide observed during Fischer–Tropsch synthesis depends on the gaseous environment.

**Relationship between the hydrodesulfurization of thiophene, dibenzothiophene, and 4,6-dimethyl dibenzothiophene and the local structure of Co in Co–Mo–S sites: Infrared study of adsorbed CO**

pp 54–62

Perla Castillo-Villalón, Jorge Ramirez\*, Rocío Castañeda




The absorption coefficient of CO adsorbed on surface Co atoms in MoS<sub>2</sub> crystallites reflects the local structure of the adsorbing sites.

**Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells**

pp 63–68

Yang-Chih Hsueh, Chih-Chieh Wang, Chi-Chung Kei, Yu-Hung Lin, Chueh Liu, Tsong-Pyng Perng\*



Pt nanoparticles were deposited on CNTs by ALD. The size and loading of Pt could be well controlled. The specific power density of homemade MEA was eleven times higher than that of commercial one.

Download English Version:

<https://daneshyari.com/en/article/61374>

Download Persian Version:

<https://daneshyari.com/article/61374>

[Daneshyari.com](https://daneshyari.com)