Virology 479-480 (2015) 457-474

Contents lists available at ScienceDirect

Virology

journal homepage: www.elsevier.com/locate/yviro

Review

Nuclear proteins hijacked by mammalian cytoplasmic plus strand @CmssMark
RNA viruses

Richard E. Lloyd *

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States

ARTICLE INFO ABSTRACT

Article history: Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous
Received 8 December 2014 biosynthetic functions required for replication and propagation. Most of these viruses are genetically
Returned to author for revisions simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into

12 January 2015
Accepted 3 March 2015
Available online 26 March 2015

new roles for support of virus infection at the level of virus-specific translation, and building RNA
replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of
mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain.
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Introduction

Viral spread and ultimately pathogenesis require efficient
replication in key host cells that aid spread of the virus within
hosts and throughout host populations. RNA viruses are typically
small, encoding as little at three genes, and thus must rely on
many host factors interacting with viral RNAs to assist with
essential replication functions, and control many interaction
points within host cells to promote replication. This often results
in redirecting host metabolism on several levels to support the
infection and at the same time suppress innate host defense
systems that are triggered. Comparing plus and minus stranded
RNA viruses, there are stark differences at the time of uncoating of
genomic viral RNA in the cytoplasm. The plus strand RNA virus
genome that is released is naked, however the minus strand RNA
virus genome is completely enclosed in a functional nucleocapsid
with RNA replicase poised ready to produce transcript mRNAs.
Thus, the plus strand virus RNA can, and does, interact with many
host RNA binding proteins (RBPs), whereas there is a little
opportunity for minus strand virus genomic RNA to interact
directly with host RBPs. Most RNA-binding proteins are nuclear
shuttling proteins and many more nuclear RBPs have been
reported to play roles in replication of plus strand RNA viruses
than minus strand RNA viruses. Accordingly, this review focuses
heavily on plus stranded RNA viruses, particularly mammalian
viruses.

RNA viruses interact with a multitude of host factors during the
course of infection. Several screening approaches have been employed
to identify which of the 15-20,000 proteins that may be expressed in
a given cell are host factors required for RNA virus replication. These
include genetic screens in yeast that implicated 130 proteins that
could affect plant virus replication (tomato bushy stunt virus) (Jiang
et al., 2006) and about 100 genes that affect brome mosaic virus
(Kushner et al., 2003; Panavas et al., 2005). RNAi knockdown studies
in mammalian cells with Hepatitis C virus (HCV), Dengue virus
(DENV) and West Nile virus (WNV) have identified several hundred
other genes that affect virus replication. However, many or most of
these may function quite indirectly, affecting pathways that produce
metabolites or products the virus needs, movement or trafficking of
constituents that are directly required, factors that control divalent
cation fluxes and ATPase pumps, the stress or innate immune

activation levels that counteract general cellular biosynthetic potential,
or include general off-target effects from the silencing step. It is likely
that the spectrum of factors that directly interact in meaningful ways
with virus RNA and proteins will be larger than that known today, but
also smaller than the first lists that have emerged from such screen-
ings (Box 1). Recently the novel approach of thiouracil cross-linking
mass spectroscopy (TUX-MS) was used to more precisely identify host
proteins bound to poliovirus RNA during replication. This procedure
identified all proteins known to interact with enterovirus RNA, plus 66
additional factors previously unidentified (Lenarcic et al., 2013). Eight
of the new proteins were chosen and validated as playing roles in
replication, indicating this new method is powerful and should be
applied to other virus systems. However, standard molecular biology
and biochemical approaches will still be required to tease out the
functions and impact of each of these factors on virus replication.
Proteins that interact with viral RNA do not present interesting targets
for antiviral development unless it is determined that they play critical
roles in virus replication.

Plus strand RNA viruses must translate incoming viral genomic
RNA as the first biosynthetic step in replication cycles, thus,
control of translation becomes the first battleground with the
host that involves co-opted nuclear factors. It makes sense for the
virus to utilize the host factors it commonly encounters at sites of
replication. Thus, translation regulation involves virus co-opting of
cellular translation factors. These are mostly cytoplasmic resident
proteins since translation is a cytoplasmic process. However,
translation does not occur on transcripts that are naked and
devoid of RNA-binding proteins, rather, cellular transcripts are
continually bound to a host of RNA binding proteins from the
instant they emerge from RNA polymerase during their synthesis.
In mammalian cells, RNA binding proteins control most aspects of
RNA biology and the RNA cycle; from splicing, transport out of the
nucleus, cellular function, transcript-specific translation control,
and cytoplasmic localization and mRNA half-life. Mammalian cells
encode hundreds of RBPs (~860), most with several splice
variants (Castell6 et al., 2012). The cytoplasmic milieu encountered
by plus strand RNA virus genomes as they are released from
capsids is poised to greet the interloper as any other mRNA, with a
ready store of RNA binding proteins ready to interact and impart
functions. No wonder viruses have evolved to interact with RBP in
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