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Thermal boundary conditions in sliding contact problem
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a b s t r a c t

If two rough surfaces slide against each other, the typical contact event is a transient interaction of a pair
of asperities. A recent finite element solution of the heat conduction through such a contact is used to
develop an expression for the heat transferred between the bodies as a function of the surface statistics,
the nominal contact pressure and the sliding speed. Simple curve fits are provided to permit these results
to be implemented as a macroscopic heat transfer condition in numerical simulations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When two bodies slide against each other, frictional heat is
generated, leading to a non-uniform temperature field. Also, since
the sliding surfaces are almost inevitably rough on the microscale,
contact occurs only near the higher parts of the contacting sur-
faces. As a consequence (i) we get very high local temperatures
known as ‘flash temperatures’ [1] and (ii) the contact being re-
stricted to a small fraction of the nominal contact area imposes an
effective thermal contact resistance between the surfaces and
therefore permits the ‘bulk temperature’ at points immediately
below the surface in the two bodies to differ [2].

The complex geometry of most engineering problems generally
necessitates numerical (typically finite element [FE]) solution, but
in creating an FE model of a real system, it is not feasible to include
the geometric details of the microtopography. Instead, we need to
homogenize the discrete nature of the localized asperity contact so
as to define appropriate boundary conditions for a macroscale
formulation of the problem. In particular, we need to define an
effective thermal contact resistance under sliding conditions, and
determine how its value is affected by nominal (i.e. average)
contact pressure, sliding speed, and the parameters characterizing
the surface roughness.

Numerous models have been proposed for the steady-state
thermal contact resistance in static contact [3,4], but these are not

appropriate for the sliding problem except at very slow sliding
speeds. Liu and Barber [5] developed a model based on the as-
sumption that the two surfaces can be characterized by Gaussian
height distributions of identical asperities and that the typical
contact event comprises the transient elastic contact between two
such asperities, one on each surface. However, their analysis used
a simplified geometry for the underlying contact problem and was
restricted to the case where the Peclet number at the asperity
scale is large compared with unity. In this paper, we shall use a
recent finite element solution of the individual asperity interaction
problem [6] to extend their results to the full range of Peclet
number, as well as using a more accurate description of the con-
tact geometry. In particular, we shall develop accurate curve fits
that can be used to define appropriate thermal boundary condi-
tions in macroscopic FE models.

2. Stochastic distribution of asperity interactions [5]

We characterize each of the two sliding surfaces ( =i 1, 2) as
comprising a set of ( )=N i 1, 2i identical spherical asperities per
unit nominal area, each of radius ( )=R i 1, 2i , and whose summits
exhibit a Gaussian height distribution,
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where ( )=h i 1, 2i is the height of a typical asperity above a datum

plane and ( )σ =i 1, 2i is the standard deviation, respectively. The
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assumption of a distribution of identical spherical asperities is an
idealization, but many authors [7–10] have shown that at least in
the static problem, the precise details of the asperity shapes and so
forth have a relatively small effect on the ensemble predictions. If
the datums in the two surfaces are separated by a distance h0 and
the bodies slide over each other at speed V, the typical asperity
interaction event then comprises the transient contact of two as-
perities with a maximum contact radius a given by
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where b is the closest approach of the summits in the interfacial
plane and

( ) = ( + )( + − ) ( )b h h R R h h h, 2 30 1 2 1 2 1 2 0

is the largest value of b for which a contact interaction can occur.
The maximum contact radius a depends on the height of an as-
perity above a datum plane, ( )=h i 1, 2i .

2.1. Heat exchange rate

Liu and Barber [5] showed that the total heat exchange rate per
unit nominal area, per unit sliding distance for this model can be
written as
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where Q(a) is the total heat exchange through a single asperity
interaction with maximum contact radius a.

A recent finite element solution of the heat conduction pro-
blem for a single asperity interaction [6] has shown that Q(a) is
very well approximated by the expression

π( ) = Δ + ( )Q a
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where V is the sliding velocity, and K kand are thermal con-
ductivity and diffusivity respectively.

2.2. Flash temperature

Lee et al. [6] also showed that the maximum flash temperature
at an elastic asperity interaction characterized by a maximum ra-
dius a is well approximated by the expression
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μ is the coefficient of friction and *E is the composite elastic
modulus.

The flash temperature varies from one asperity interaction to
another, but a mean value can be determined as
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2.3. Nominal contact pressure

The mean separation h0 between the surfaces depends on the
nominal contact pressure pnom. If the asperity interactions are all

assumed to be elastic, the mean nominal pressure is
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can be regarded as a dimensionless measure of pnom.

3. Results and discussion

The heat exchange rate Qc can be obtained by substituting the
finite element approximation (5) into (4), and a fairly general re-
lation can be established by defining the dimensionless heat ex-

change rate ( ^ ^ )J V h,c 0 through the equation
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is a Peclet number defined at the asperity scale. We recall that Qc is
the heat transferred per unit sliding distance, so an equivalent
macroscale heat transfer coefficient hc can be defined such that the
mean heat flux = Δq h Tc c , in which case
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A similar dimensionless measure of the mean flash tempera-
ture can be obtained by substituting (6) into (7) and defining the

function ( ^ ^ )G V h,T 0 through the equation
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These equations show that the dimensionless heat exchange and
the mean flash temperature are each characterized by a function of

the two dimensionless parameters ^ ^V h, 0, the second of which is in
turn determined by the dimensionless nominal pressure If.

3.1. Limiting behavior at large and small Peclet number

Fig. 1(a) shows the dependence of the product V̂Jc on If at

progressively reduced values of V̂ . A limiting curve is obtained
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