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a b s t r a c t

Love's rectangular contact solution was recognized as the key ingredient in developing fast Fourier
Transform related algorithms for computational contact analyses. This paper proposes an effective no-
tation to simplify the analytical derivations, which are only carried out on the primitive functions. The
complete solution of the stresses and displacements, together with the surface deflection, produced by
the both uniform normal and tangential loadings over a rectangular patch are solved in a more compact
and consistent way, with explicit closed-form solutions optimized for computational efficiency and
numerical stability. The correlation to the Green's functions due to Boussinesq and Cerruti is also noted.
The present work complements the existing literature and provides a complete reference to the classical
contact solution.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Contact analyses, which can be traced back to the work of Hertz
[1], have a broad spectrum of applications in engineering fields,
including wheel rail contact, as well as mechanisms of friction,
wear and fatigue in bearings and gears. A basic problem in contact
mechanics is to find the stresses and deformations produced in an
elastic half-space under the action of normal and tangential trac-
tions over a bounded area of the surface. Such a half-space contact
model is important to predict the counter-conformal contact
which occurs in a region sufficiently small in comparison with the
realistic geometry of the contacting bodies.

The classical approach to solve the elastic field of a half-space
loaded by surface tractions is based on Boussinesq-Cerruti's po-
tential functions [2]. In 1929, Love [3] obtained a closed-form so-
lution to the surface deflection of a half-space which is subjected
to a uniform surface normal pressure over a rectangular patch. He
also computed the derivatives necessary for evaluating the sub-
surface stress field [3]. A complementary class of problems con-
sidering surface tangential loading are also of interest to address
the effects of friction. As an analogous effort to Love's solution,
Ahmadi et al. [4] solved the interior stress field produced by a
uniform tangential loading over a surface patch.

Although the literature search is not exhaustive, the contact

mechanics community has seen a variety of publications related to
the Love solution (Table 1). Except for the well-known Love's
surface deflection solution, it seems that there is usually no
standard notation or a universally accepted format in representing
the formulation. The complete rectangular contact solution is
scattered in various technical papers of contact mechanics, but has
not been systematically documented even in the monographs
[2,8]. Some works have only listed the necessary derivatives of the
potential, and are difficult to be used as readily documented
references.

Allowing for the both loading types, a complete solution set,
including subsurface displacements and stresses as well as surface
deflection, is desirable for a typical contact analysis. Moreover,
recognition of the special structure of Love's solution should ex-
pedite the numerical computations.

The paper is organized as follows: In Section 2, the general
potential theory of half-space contact is reviewed, with main re-
sults summarized for developing the analytical solutions. The
numerical techniques, taking advantage of the fast Fourier trans-
form (FFT), are also discussed, where the elementary solutions of
Love's problem as the key ingredients are highlighted. A notation
that captures the special feature of Love's solution is then in-
troduced. In Section 3, we present a complete set of the closed-
form solutions to Love's problem. Detailed formulae are derived
for the both displacement and stress components, produced by the
combination of uniform normal and tangential loadings over a
rectangular patch. In Section 4, some mathematical issues are
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examined and the elastic solutions at a surface point are deduced.
The correlation between the elementary solution and the related
Green's functions are also discussed to validate the present work.
Finally, concluding remarks are given in Section 5; and for the

reader's convenience, the required derivatives of three key pri-
mitive functions for the present work are summarized in the
Appendix.

Nomenclature

a Radius of the circular Hertzian contact in the bench-
mark example

− −Ci k j l
33

, Influence coefficient of the deflection due to normal
pressure

diff Any order of partial derivative with respect to x1 or x2
( )ξ ξ ξF , ,1 2 3 Response primitive function
( ⋯) [ ⋯]F The notation proposed for the elementary solutions
( )− ′g x xij Green's function of the stress field

( )ξ ξ ξG , ,1 2 3 Green's function
( )− ′G x xij Green's function of the displacement field

Ig The set of all the grid nodes
[ ]i j, Nodal numbering for a two dimensional discretization

( )I i Key primitive functions related to the elementary
solution

( )K i Key potential functions of the elementary solution
N1, N2 Total number of grids in the x1 and x2 directions,

respectively
(⋅)O Order of operation

pH The peak pressure of the circular Hertzian contact
( )′ ′p x x,i 1 2 Distributed tractions along the xi directions on the

surface
pj0 The magnitude of the uniform loading patch

( )′ ′P x x,j 1 2 Concentrated force applied at a surface point
Q The common structure of elementary potentials

( )Q i
j Potential functions for a general distributed loading

condition
r Distance between a field point and the excitation

source point
S Loaded area
S1 Rectangular patch with uniform traction loadings
uH Deflection at the origin of the circular Hertzian contact
ui Displacement component
( )x x x, ,1 2 3 Coordinate system
( ′ ′ )x x, , 010 20 Center of the rectangular loaded patch

( )x x xx , ,1 2 3 A general field point of the elastic half-space
( )′ ′ ′x xx , , 01 2 A general surface point within the loaded area

Xi Auxiliary functions defined by Eq. (26).

α βx x,1 2 Variables for bounds of integration, cf. Eq. (14).
Δ Δ,1 2 The side lengths of rectangular loaded patch
λij Primitive function of the displacement field
Λij Elementary influence coefficient of the stress field
μ Shear modulus
ν Poisson's ratio
ξi Variables in Green's functions and response primitive

functions
π The ratio of the circumference of a circle to the

diameter
ρ Distance between a surface field point and the ex-

citation point
σij Stress tensor
σ σ, i Stress component in the form of Voigt notation
φij Primitive function of the displacement field
Φij Elementary influence coefficient of the displacement

field
( )ψ i Auxiliary functions defined by Eq. (6)

Ω χ, Integral kernels of the potential functions, cf. Eq. (3)

Subscripts

i The coordinate component, or index of the Voigt
notation

j The coordinate component of the potentials and
loadings

α β, The indices with value ranged from 1 to 2.

Superscripts

( )i Indicating the order of derivatives of the potential
functions

Symbol

− Denoting variable or component on the surface of the
half-space

Table 1
A survey of the literature related to Love's problem.

Author Year Disp. Stresses Surface disp. Final solutions Notes & Comments

N T N T N T

Love [3] 1929 √ √ √ � Presented related derivatives, but no final solution
Kalker [5] 1979 √ √ � Listed some primitives, but no further information
Ahmadi et al. [6] 1983 √ √ √ Showed numerical discretization and formulation
Johnson [2] 1985 √ √ Presented theoretical basis, not much final results
Kalker [7] 1986 √ √ √ √ � Presented displacement gradient
Ahmadi et al. [4] 1987 √ √ Some stress expressions are lengthy
Hills et al. [8] 1993 √ √ √ √ √ √ Partial No final expressions for most components
Dydo [9] 1993 √ √ √ √ � Listed required derivatives, but no final solution
Bjorklund & Andersson [10] 1994 √ √ √ No subsurface solution
Dydo & Busby [11] 1995 √ √ √ √ � Only presented 3 key primitives, no final solution
Liu & Wang [12] 2002 √ √ √ No detailed derivations
Chen & Wang [13] 2008 √ √ √ No detailed derivations
Willner [14] 2008 √ √ √ No subsurface solution

where symbol “N” stands for normal traction and “T” tangential traction, uniformly applied over the rectangular patch.
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