Contents lists available at SciVerse ScienceDirect

Virology

journal homepage: www.elsevier.com/locate/yviro

ADAR1 is a novel multi targeted anti-HIV-1 cellular protein

Nabanita Biswas ^a, Tianyi Wang ^a, Ming Ding ^a, Ashwin Tumne ^a, Yue Chen ^a, Qingde Wang ^b, Phalguni Gupta ^{a,*}

^a Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
^b Department of Medicine, Division of Hematopoiesis and Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA

ARTICLE INFO

Article history: Received 12 July 2011 Returned to author for revision 29 August 2011 Accepted 16 October 2011 Available online 21 November 2011

Keywords: ADAR1 HIV-1 Antiviral Cellular protein

Introduction

ADAR1 (Adenosine Deaminase Acting on RNA 1), an RNA editing enzyme, catalyzes hydrolytic deamination of adenosine to inosine (A-to-I) in completely or partially double-stranded RNA (Hough and Bass, 1994; Kim et al., 1994; O'Connell and Keller, 1994; Patterson and Samuel, 1995). This has a number of effects. The A-to-I substitution affects pre-mRNA splicing by changing the splicing site and decreases the binding of RNA to protein resulting in functional changes of the protein (Bass, 2002; Samuel, 2003). Furthermore, during mRNA translation, Inosine is recognized as Guanosine and therefore it incorporates incorrect amino acid sequence (Bass, 2002; Samuel, 2003). Because of these pluripotent properties of ADAR1, it disrupts replication of a number of RNA viruses. ADAR1 inhibits replication of hepatitis delta virus by editing of adenosine to inosine in pre-mRNA of hepatitis delta virus which eventually affects splicing of untranslated regions (Patterson and Samuel, 1995; Polson et al., 1996; Sato et al., 2001). ADAR1 was also known to edit doublestranded RNA found in the measles virus, which inhibited virus assembly and release from cells, leading to a persistent infection and development of fatal neuropathic measles infection (Horikami and Moyer, 1995). Taylor et al. (2005) showed that ADAR1-induced viral RNA editing inhibited Hepatitis C viral replication (Taylor et al., 2005). Recently Suspene et al. have shown ADAR1 induced mutation in seasonal influenza and attenuated measles viruses.

ABSTRACT

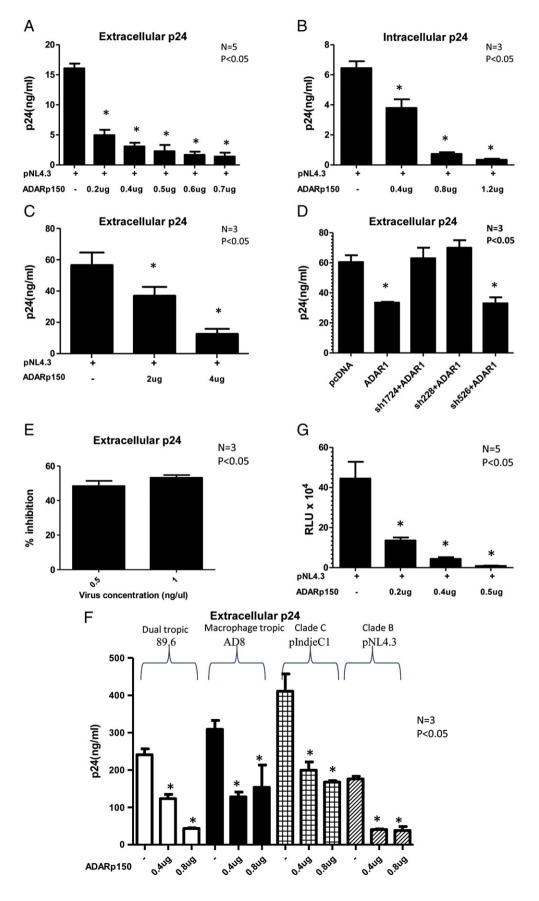
We examined the antiviral activity of ADAR1 against HIV-1. Our results indicated that ADAR1 in a transfection system inhibited production of viral proteins and infectious HIV-1 in various cell lines including 293T, HeLa, Jurkat T and primary CD4 + T cells, and was active against a number of X4 and R5 HIV-1 of different clades. Further analysis showed that ADAR1 inhibited viral protein synthesis without any effect on viral RNA synthesis. Mutational analysis showed that ADAR1 introduced most of the A-to-G mutations in the *rev* RNA, in the region of RNA encoding for Rev Response Element (RRE) binding domain and in *env* RNA. These mutations inhibited the binding of *rev* to the RRE and inhibited transport of primary transcripts like *gag, pol* and *env* from nucleus to cytoplasm resulting in inhibition of viral protein synthesis without any effect on viral RNA synthesis. Furthermore, ADAR1 induced mutations in the *env* gene inhibited viral infectivity. © 2011 Elsevier Inc. All rights reserved.

Since HIV-1 genome has several putative double stranded secondary RNA structures throughout its genome, HIV-1 RNA was considered a potential target for ADAR1. Therefore, in this report we investigated the antiviral effect of ADAR1 on HIV-1. We provided evidence that ADAR1 inhibited HIV-1 protein synthesis and viral infectivity in a variety of cells and against HIV-1 of different tropisms and different clades. We further demonstrated that such antiviral activity was at the post transcriptional stage of HIV-1 replication and that ADAR1-induced mutation at the *rev* and *env* RNA may be responsible for such posttranscriptional inhibition of viral protein synthesis. In elucidating the mechanism of ADAR1 induced inhibition of HIV-1 protein synthesis we found that ADAR1 induced A-to-G mutations in *rev* inhibited its transport activity of primary transcripts *gag, pol* and *env* from the nucleus to cytoplasm and thereby inhibited viral protein synthesis without any effect on viral RNA synthesis. ADAR1-induced mutations in the *env* gene further attenuate viral infectivity.

VIROLOG

Results

ADAR1 inhibits HIV-1 protein synthesis and viral infectivity


In order to evaluate the effect of ADAR1 on HIV-1 production, 293 T cells were co-transfected with 0.1 μ g pNL4.3 HIV-1 DNA and different amount of ADAR1 DNA. In each transfection assay (this one and subsequent ones), cells were also co-transfected with a luciferase-expressing plasmid DNA to control transfection efficiency. The expression of ADAR1 p150 from transfected ADAR1 DNA was analyzed by Western Blot and normalized against β -actin loading control to show the relative intensity of ADAR1 p150 expression (Supplemental

^{*} Corresponding author at: Department of Infectious Diseases and Microbiology, 426 Parran Hall, 130 DeSoto Street, Pittsburgh, PA 15261, USA. Fax: +1 412 624 4953. *E-mail address*: pgupta1@pitt.edu (P. Gupta).

^{0042-6822/\$ -} see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.virol.2011.10.024

Fig. 1A). Following 48 h of transfection, viral protein synthesis was quantified by measuring HIV-1 p24 in culture supernatant and intracellular HIV-1 p24 production in a cell extract by ELISA. ADAR1 inhibited extracellular (Fig. 1A) and intracellular (Fig. 1B) HIV-1 p24 production in a dose dependent manner. With 0.7 µg of ADAR1 containing plasmid there was an 8 fold reduction of extracellular HIV-1 p24 production in

Download English Version:

https://daneshyari.com/en/article/6141247

Download Persian Version:

https://daneshyari.com/article/6141247

Daneshyari.com