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a b s t r a c t

Existing segmented separation method for differentiating the components contained within a bi-
Gaussian stratified surface has two drawbacks: 1) assumption of probability material ratio curve con-
sisting of two lines with a knee-point rather than a smooth transition region, violates the unity-area
demand on probability density function (PDF); 2) preference for large roughness-scale part, yields the
message loss of small roughness-scale part. In the present study, surface combination theory is proposed
to develop a continuous separation method. The two separation methods are applied for analyzing and
reconstructing simulated bi-Gaussian and experimental worn surfaces. The results show that the con-
tinuous method has greatly overcome the two drawbacks and almost leads to the same surface para-
meters as the measured surface in the surface reconstruction.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Surface texture can be considered as the fingerprint of a com-
ponent or active surface [1]. Namely, the surface texture not only
represents the manufacture process consequence, but also the
current state of the component or part. Therefore, it is imperative
to search a number of surface parameters to capture surface
characteristics as far as possible. Furthermore, surface texture acts
as the initial input of analyzing tribological behavior such as
lubrication, contact and wear. The input data can be obtained
either from measurements or numerical surface simulations. Due
to its flexibility, efficiency and stability, the numerical surface
reconstruction is a good alternative.

In the aspect of characterizing rough surface, the widely used
central moment parameter set such as Ra, Rq (¼σ), Sk and Ku
works well for the surfaces generated by one process. However, it
fails to assess a bi-Gaussian stratified surface which is a combi-
nation of the surface textures due to two processes. Cylinder liner
of internal combustion engines manufactured by plateau honing
operation is a representative bi-Gaussian surface consisting of
smooth wear-resistant and load-bearing plateau with intersecting
deep valleys working as oil reservoirs and debris traps. Besides
two-process surfaces, any prepared surface texture is often rapidly
altered by wear, also leading to a bi-Gaussian surface with a large-
scale roughness in the valleys and a small-scale roughness in the
plateaus left by a truncation of the peaks of the initial large-scale

roughness. Generally speaking, for the two-process or worn bi-
Gaussian surfaces, two main characterizing methods have been
developed based on material ratio curve, i.e., Abbott curve [2]. The
first one is the Rk parameter set (Fig. 1(a)) according to German
standards DIN 4776 [3]. Its kernel is based on the use of a mini-
mum slope line, spanning a 40% material ratio, to obtain the core
roughness depth Rk. Since Rk is defined as the width of core band
of roughness, the roughness above and below this band are
characterized by the reduced peak height Rpk and reduced valley
depth Rvk respectively, where Rpk gives information on the
running-in period and Rvk embodies the lubricant storage capa-
city. Material ratios Mr1 and Mr2 are the transition points from
‘peak’ to ‘core’ and from ‘core’ to ‘valley’. However, the Rk method
implies a three-stratum concept for the surface, conflicting with a
two-stage manufacturing process. Therefore, the probability
material ratio curve provides the second choice. With this
approach, the material ratio curve of a Gaussian distributed sur-
face is a straight line when plotted on a Gaussian standard
deviation scale [4] (the detailed transformation frommaterial ratio
curve to probability material ratio curve is provided in Appendix
C). The intercept is the mean value of asperity height and the slope
is Rq. Therefore, a bi-Gaussian stratified surface should exhibit two
linear regions (Fig. 1b), where Rpq (¼σu) corresponds to the mean
square root of the plateau region (upper surface) and Rvq (¼σl)
corresponds to the mean square root of the valley region (lower
surface). The knee-point (rk, zk) defines the separation of the upper
and lower surfaces whilst Pd provides the distance between their
mean surfaces (zmu, zml). This probability material ratio curve
method has been used by Whitehouse [5], Malburg et al. [6],
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Sannareddy et al. [7], Leefe [8] and Pawlus and Grabon [9] to
characterize bi-Gaussian surfaces.

However, all the above works [5–9] used the segmented
regression technology to differentiate between the component
strata contained within the stratified surface. The process consists
in 1) defining a certain point of the probability material ratio curve
as the knee-point to divide the curve into two regions; 2) linearly
fitting each region to obtain the cumulative error which is the sum
of the fitting error at each point; 3) repeating first two steps
successively from the end of the curve to the other; 4) searching
the optimized knee-point with a minimum cumulative error; 5)
outputting the intercepts and slopes at the optimized knee-point,
i.e., (zmu, σu) relating to the upper surface and (zml, σl) relating to
the lower surface; 6) dividing z into the upper and lower surfaces
based on the selected knee-point, and calculating other surface
parameters such as correlation length, summit density and mean
summit curvature radius within each component surface.
Although the segmented regression is an effective method, it has
two drawbacks. The first one is that it arbitrarily assumes the
probability material ratio curve consisting of two straight lines
with a knee-point. In fact, the probability material ratio curve
should have a smooth transition region, which is a result of the
gaps induced in the original plateau profile by the deep valleys in
the rough profile [7] and the unity-area demand on the PDF. The
second one is that the segmented regression prefers to focus on
the large-scale roughness (higher slope) because of the principle
of minimum cumulative error for searching the optimized knee-
point, and therefore easily induces a large fitting error for the
surface with the small-scale roughness (lower slope), leading to
the message loss of the small roughness-scale surface.

In the aspect of reconstructing rough surface, broadly speaking,
three main methods can be used: the autoregressive method [10–
12], the moving average method [13–15] and the function series
[16–18]. Direct or fast Fourier transform (FFT) can be used in these
methods to generate a Gaussian or non-Gaussian surface, where
the latter is more efficient and needs a smaller storage space. To
generate a non-Gaussian surface, the Johnson translation system
[19] with auxiliary algorithms [20,21] is used to impose the pre-
scribed skewness and kurtosis to the initial Gaussian series. Minet
et al. [22] have used the Johnson approach [19–21] to reproduce
simulated surfaces for three worn surfaces. Even if the simulated
non-Gaussian surface generated by the Johnson reconstruction
approach could capture the roughness, correlation length, skew-
ness and kurtosis of a worn surface, it still ignores the stratified
characteristic. Therefore, the bi-Gaussian reconstruction approach
consisting in four steps is a good alternative: 1) generating two
Gaussian surfaces with their own autocorrelation function and
standard deviation; 2) choosing the distance between the mean
surfaces of the two surfaces; 3) generating a new surface by
remaining the minimum of the two Gaussian surfaces at each
point; 4) updating the new surface relative to its mean value.
Pawlus [23] has simulated some bi-Gaussian surfaces with speci-
fied component surface parameters.

The aim of the present study is to propose a continuous
separating method instead of the segmented regression method.
This new separation method arises from the revision of the PDF for
the first drawback, and sequentially overcomes the second draw-
back. Then, the new separation method is carried out on both
simulated bi-Gaussian and experimental worn surfaces to evaluate
its performance. For the comparison purpose, the segmented
regression method is also performed.

2. Continuous separation method

2.1. Surface combination theory

Fig. 2 illustrates the surface combination theory. Assuming a
surface S1 following a height distribution with a PDF f1, the
probability to find a point below a certain height z can be given by
the cumulative distribution function (CDF) P1(z). The relation
between these two functions is

P1ðzÞ ¼
Z z

�1
f 1ðzÞdz: ð1Þ

It means that if the surface S1 is cut by a horizontal plane of height
z, P1(z) is the projected area of the points below the plane. By this,
f1(z)dz corresponds to the additional projected area when the
plane transfers from z to zþdz. Here, the areas are normalized by
the total area. The same procedure is also carried out on another
surface S2.

Now, if we tend to generate a new surface S3 by remaining the
minimum of the two above surfaces at each point, i.e., S3¼min(S1,
S2), the PDF of S3 is not simply the sum of f1 and f2. In fact, when a
truncation plane is done at z and then transferred with an incre-
ment dz, an additional projected area is created. Yet, it is not
simply obtained by f1(z)dzþ f2(z)dz. Indeed, for the surface S1, it is
impossible to create additional projected area from the part where
some points of the surface S2 already exist. Namely, it is possible to
create additional projected area from a reduced area (1�P2). This
limitation of creating additional projected area also exists for the
surface S2. Thus, the PDF of S3 is

f 3 ¼ f 1ð1�P2Þþ f 2ð1�P1Þ: ð2Þ

Fig. 1. Characterization of a two-process or worn surface.
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