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a b s t r a c t

This research explores the influence of inhomogeneities on the torsional fretting via a newly developed
semi-analytical method with considering the load history. The disturbances of elastic fields caused by
inhomogeneities are modeled based on Eshelby’s equivalent inclusion method. Solutions are achieved
iteratively through considering the coupling of surface tractions and subsurface inhomogeneities. The
influences of a single inhomogeneity are investigated, revealing that the presence of an inhomogeneity
causes significant surface effects on the torsional fretting. Further, the influences of inhomogeneity
distribution parameters on the torsional fretting performance are quantified, demonstrating the cap-
ability of the proposed method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fretting, defined as the oscillatory movements of small ampli-
tudes occur along the contact interface between two objects, may
affect the service life of a material due to rapid crack formation
and surface wear. For a ball-on-flat contact configuration, fretting
can be categorized as four basic modes: tangential, radial, rota-
tional, and torsional, according to the relative motion directions
[1]. Among them, torsional fretting presents as the relative motion
induced by reciprocating torsion under alternating load, which is
one of the main contact modes existed in many engineering and
natural systems, such as spinning balls against raceways and
retention rings, a ball joint connecting a control arm to the
steering knuckle, ball and socket in mammal shoulder and hip
joints, artificial hip and knee joints involving rolling and sliding
during walking [2]. Therefore, it is important to analyze torsional
contact quantitatively and to understand the failure mechanisms
induced by torsional fretting.

A torsional contact problem is complex when the contacting
bodies are under a limited torque insufficient to cause full sliding.
As early as 1951, Lubkin [3] firstly proposed a concept that the
contact surface was composed by two parts: stick zone and slip
zone. The analytical solutions of surface shear tractions and
moment as functions of the radius of stick during a loading process

based on two loaded elastic spheres with identical materials were
derived. Torsional contact-related problems have been widely stu-
died since then. Deresiewicz [4] extended Lubkin's solution and
more useful solutions with considering an oscillating torque of fixed
amplitude were obtained. Keer [5], Hills and Sackfield [6] proposed
a set of analytical solutions for the stress fields induced by surface
shear traction during a loading process. Recently, the analytical
solution for torsional contact is still attractive to many research
scholars [7–9]. On the other hand, many beneficial experimental
studies on torsional fretting have also been conducted. Briscoe et al.
[10,11] investigated the fretting wear behavior of poly (methyl-
methacrylate) (PMMA) substrate contacting against steel balls
experimentally, and found that contact zone kinematic conditions,
including torsional fretting, rotational fretting, etc., play a major role
in determining the wear resistance of the PMMA. Systematic
experiments on torsional fretting were carried out by Cai and col-
league [2,12–14] to explore the wear performance of materials like
LZ50 steel, PMMA, Ti6Al7Nb alloy, etc. More recent experimental
works were reported in Refs. [15,16].

Quantitative analyses on the torsional contact are critical to
understanding the mechanisms of torsional fretting fatigue.
Advancement of computational methods and increase in compu-
tational power allow the development of more realistic numerical
models. As a typical full numerical method, finite element method
(FEM) was used by Cuttino and Dow [17] to study elliptic contact
involving torque, and by Segalman et al. [18] to verify their model
for the torque-twist angle relationship. However, the FEM is time
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consuming when solving contact problems for tribological com-
ponents, where the contact regions are much smaller than the
contact bodies. In recent years, semi-analytical methods (SAMs)
have proven more efficient than the FEM in solving contact pro-
blems. The SAMs combine the advantages of numerical and ana-
lytical methods. The fundamental solutions are analytical
responses to a unit excitation, usually in the form of a Green’s
function, and the final results are obtained from the superposition
of the fundamental solutions. The influence coefficient, which
relates a response to an excitation in a unit cell, is obtained from
those fundamental solutions. By using the SAMs, Wang et al. [19]
considered the effects of a tangential load and a twisting moment
and found that the coupling of a normal load, a tangential load and
a twisting moment makes the contact behavior much more com-
plex. Partial slip contacts of dissimilar materials under coupled
normal and tangential loads were also studied with the SAMs [20–
23]. The effects of loading path were not considered for the above
studies. Leroux and Nélias [24], Gallego et al. [25] and Wang et al.
[26] established more general fretting algorithms involving the
loading path.

In the above works, the materials of contacting bodies were
assumed homogeneous. However, inhomogeneities, defined as
domains having properties different from those of the surrounding
material (matrix) [27], are inevitably existed in many engineering
materials. The presence of inhomogeneities can significantly alter
torsional contact performance of materials due to their produced
disturbances to the elastic field. The modeling of the influence of
inhomogeneities on the elastic field of materials were explored by
some researchers since the pioneering work by Eshelby [28,29]. In
his work, the well-known equivalent inclusion method (EIM) was
proposed innovatively to solve the stress field of an ellipsoidal
inhomogeneity with replacing the inhomogeneity by an equiva-
lent inclusion subjected to a properly selected eigenstrain

distribution. The EIM can be effective in handling degenerated
two-dimensional (2D) plane inhomogeneities [30,31] and three-
dimensional (3D) multiple inhomogeneities [32,33]. Recently, the
EIM was introduced to deal with heterogeneous contact problems
[34]. Moreover, integrated with a rolling-contact fatigue (RCF) life
prediction model, the EIM was applied to investigate the RCF lives
of composites [35].

Non-metallic inhomogeneity plays a major role in affecting the
contact mechanism of materials. External loads can make the
inhomogeneities interact with the matrix, resulting in localized
stress concentrations and unexpected deformations on the surface,
which further modifies the surface traction distribution [17]. Such
an interaction between the surface tractions or deformations and
inhomogeneities under contact loads must be fully considered for
heterogeneous torsional contact problems. In order to better
understand the influence of inhomogeneity on torsional contact of
heterogeneous materials, a general model based on a semi-
analytical method is developed by using the EIM and fast Fourier
transform (FFT) algorithms. The load history can be taken into
account in the new model. Inhomogeneity beneath the surface is
set as ellipsoidally shaped. With different combinations of the
three principal axes, an ellipsoidal inhomogeneity can con-
veniently represent various shapes, such as spheres, flat cracks,
and cylindrical microwires. It is expected that the simulation
results can shed light on the nature of the fretting phenomena in
tribological components.

2. Numerical modeling of torsional contact for heterogeneous
materials

Typical point contact problems are investigated. Heterogeneous
torsional fretting is simplistically modeled as torsional contact

Nomenclature

a Hertzian contact radius, mm
c stick zone radius, mm
Cijkl, C

�
ijkl elastic moduli of the matrix and inhomogeneity, MPa

Cux
p ,Cuy

p ,Cuz
p influence coefficients relating pressure to surface
displacements, mm/MPa

Cux
qx
,Cuy

qx ,C
uz
qx
,Cux

qy
,Cuy

qy ,C
uz
qy

influent coefficients relating shear trac-
tions to surface displacements, mm/MPa

E1 Young’s modulus of the half space, GPa
E2 Young’s modulus of the loaded sphere, GPa
Ei Young’s modulus of the inhomogeneity, GPa
E(k) complete elliptical integral of the second kind
Eðϕ; k0Þ incomplete elliptical integral of the second kind
Fðϕ; k0Þ incomplete elliptical integral of the first kind
Fx, Fy applied tangential load along the x, y direction, N
g surface gap, mm
G1 shear modulus of the half space, GPa
G2 shear modulus of the sphere, GPa
h0 initial gap, mm
H depth of the cuboidal inhomogeneity, mm
H influence coefficient matrix relates the eigenstrain to

the surface displacement, mm
Ic, Istick, Islip contact, stick and slip regions
K(k) complete elliptical integral of the first kind
Mz torque along the z direction, N mm
p maximum Hertzian pressure, MPa
ph maximum Hertzian pressure, MPa
qr radius of the spherical inhomogeneity, mm

qx, qy radius of the spherical inhomogeneity, mm
r radius of the spherical inhomogeneity, mm
rx, ry, rz semi axes of the ellipsoidal inhomogeneity, mm
R radius of the loaded sphere, mm
sx, sy Eshelby tensor relating the eigenstrain to the

disturbed strain
Sklmn Eshelby tensor relating the eigenstrain to the

disturbed strain
ux, uy, uz surface displacements in three directions caused by

surface tractions, mm
u�
x ; u�

y; u�
z perturbed surface displacements in three directions
caused by eigenstrains, mm

W normal load, N
x, y, z space coordinates, mm
δx, δy, δz rigid displacements parallel to the x, y, and z

direction, mm
ΔE energy dissipation per cycle, N mm
θ twist angle
ε0kl strain caused by surface tractions
ε�ij eigenstrain
μf friction coefficient
ν1 Possion’s ratio of the half space
ν2 Possion’s ratio of the loaded sphere
νi Possion’s ratio of the inhomogeneity

Special symbols

* convolution
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