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a b s t r a c t

Transversely isotropic materials are a unique group of materials whose properties are the same along
two of the three principal axes. Various natural and artificial materials behave effectively as transversely
isotropic elastic solids therefore this specific case of anisotropy has several engineering and industrial
applications. Various components can be classified as transversely isotropic materials including crystals,
rocks, piezoelectrics, biological tissues such as muscles, skin, cartilage tissue or brainstem and fibrous
composites. In this study, the theory of contact mechanics developed by Persson is extended in such a
way that it can model the contact and friction of a transversely isotropic viscoelastic solid in contact with
a rigid rough surface. Numerical results show that anisotropy should be taken into account when dealing
with transversely isotropic solids. The experimental results validate the theory.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction between two contacting solids which is the
main subject of tribology plays a major role in a large number of
physical phenomena and engineering applications such as friction,
lubrication and wear. The analysis of the stresses, contact stiffness,
surface deformations and contact areas generated by the contact
between bodies with rough surfaces needs to be accurately
accounted for in a smart design of various engineering compo-
nents including but not limited to tires, seals, bio-inspired adhe-
sives, coatings, piezoelectric materials, electrical contacts and
syringes. The mechanics of isotropic elastic materials is a quite
developed research field. The contact problems for anisotropic
solids were studied in many papers [1–4]. Transversely isotropic
materials are a unique group of materials whose properties are the
same along two of the principal axes. Several materials can be
classified as transversely isotropic materials including crystals,
rocks, piezoelectric materials, some biological tissues such as
muscles, skin, cartilage tissue or brainstem and fibrous compo-
sites. Researchers have been investigating the mechanics of
transversely isotropic materials for many years [1,3,5–8] simply
because many natural and artificial materials behave effectively as
transversely isotropic elastic solids. Viscoelasticity which makes
the contact problem even more complex, is crucial in modelling

rubber-like materials and biological tissues and should not be
ignored.

Several approaches dealing with the contact of real random
rough surfaces have been introduced. Greenwood and Williamson
(GW) proposed asperity-based models [9], in which the roughness
is reduced to a set of identical asperities distributed according to a
Gaussian or exponential height distribution. The GW model has
attracted several researchers for a long time. Every asperity is
incorporated with a Hertzian punch in this model. Little is gained
by proposed modified versions of the GW contact model, treating
the asperities as ellipsoids, or by introducing a distribution of
asperity sizes [10]. Random process theory is used in other mod-
ified versions of the GW model to make the asperity curvature
depending on their heights. In another attempt, fractal theory is
used to recognize the multiscale nature of real surfaces [11].
Although the achieved results through multi-asperity contact
models are of practical interest, neglecting the interactions
between neighboring microcontacts is the main disadvantage of
such models. In the study of soft materials like rubbers or soft
biological tissues, the effect of the asperities on each other cannot
be neglected because these flexible materials can deform much
easier and therefore the problem of neglecting interactions
between neighboring asperities is heavier especially when
approaching full contact, i.e. when the contact spot separation is of
comparable size with the spot size itself. The interaction between
the asperities can be added to the current asperity models [12,13],
however, these approaches remain quite approximate [14]. On the
other hand, a new model was proposed by Persson [15] that does
not pre-exclude any scale of roughness from the analysis. In his
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model, the exact solution for the case of full contact is firstly
obtained and further analysis is extended to the partial contact by
imposing a boundary condition which is an approximate solution.
Even though Manners and Greenwood [16] raise some concerns
about the boundary conditions applied in Persson's theory, the
behavior of elastically soft materials (with the ability to bend and
fill out the roughness on at least small wave lengths) is more
analogous to Persson's analysis, than the asperity contact models
(where it is assumed that contact occurs on segregated islands, far
from each other, which are named asperities and do not have any
influence on each other because of the far distances in between).
Persson introduced a correction of the expression used for the
elastic energy in the asperity contact regions [17]. A comparison
between numerical results and Persson's contact model has led to
a suitable value for the correction factor [18]. Multi-asperity con-
tact models and Persson's approach have been comparatively
analyzed [19].

The theory of contact mechanics and friction of Persson has been
extended to model the contact and friction between surfaces with
anisotropic surface roughness [20]. The main purpose of this study is
to extend Persson's theory in such a way that it can model the contact
and friction of a transversely isotropic viscoelastic solid in contact
with a rigid rough surface. This is of importance in modelling the
contact of soft biological tissues such as, muscles, skin and brainstem.
Mechanical properties of the novel composites can be controlled and
tuned by morphology, distribution and alignment processes to
achieve the desired characteristics [21]. Moreover, fiber reinforced
composites can (depending on the direction of the fibers in the
composite) show transversely isotropic characteristics. They have a
wide range of industrial applications such as tires, transmission belts
and seals. In Section 2, the theory is explained. In the next section,
both the real area of contact and the viscoelastic contribution to the
overall friction of a transversely isotropic material are calculated and
the results are compared with the results for an isotropic material.
The measured dynamic mechanical properties (in different directions)
of a prepared unidirectional fiber reinforced rubber sample as well as
the measured friction between two rough granite surfaces and the
rubber sample are presented in Section 4. The experimental results
are compared with the numerical results of the theory in Section 5
and the conclusions are summarized in Section 6.

2. Friction between a transversely isotropic viscoelastic mate-
rial and a rough rigid surface

The friction contributors in the contact between a viscoelastic
solid and a rigid rough surface are commonly described by two
main contributors i.e. the adhesion component and the hysteresis
component [22]. Hysteresis component of friction is generated by
(cyclic) deformation of the rubber which dissipates energy via
the internal damping in the bulk of the material [15]. Adhesion is
characterized by the attractive forces between the contacting
bodies [23]. Energy dissipation due to crack opening [24] and
energy dissipation in shearing of a thin viscous film [25] are other
contributors to friction of elastomers. Pan [26] has shown the
significant role of interfacial interactions, in addition to the bulk
viscoelastic hysteresis, in determining the wet sliding friction of
elastomer compounds. The friction force contributions men-
tioned before are summarized in terms of two main forces (see
Fig. 1): (1) the contributions related to the viscoelastic defor-
mations; and (2) the contributions related to the real area of
contact as defined in Eq. (1). One contributor cannot be indicated
as the main contributor to the friction as a generalized rule [27],
but depending on the tribological conditions, hysteresis or the

real area of contact can play a dominant role in determining the
overall friction.

Ff ¼ Fviscþτf Areal ð1Þ
where Ff ; Fvisc are the forces concerning the total friction and the
contribution from the hysteresis losses respectively and the
product τf Areal represents the force in the real area of contact
where τf ; Areal are the frictional shear stress and real area of
contact. In some tribological systems, the shear stress between
the two contacting bodies changes according to the tribological
conditions and the frictional energy input [28].

2.1. Contact mechanics between a transversely isotropic viscoelastic
material and a rough rigid surface

Consider a rough rigid surface sliding at a constant velocity v on a
transversely isotropic viscoelastic half space (whose surface is parallel
to the planes of isotropy). Take a rectangular coordinate system
x; zð Þ ¼ ðx; y; zÞ. By the application of a concentrated load F x;0ð Þ ¼ F0
on the free surface of the transversely isotropic viscoelastic solid, the
displacement at any point on the surface, uzðx;0Þ, can be calculated
by the equation below [29], substituting z¼ 0:
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and the constants α¼ B11
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If the generalized Hook's law for a transversely isotropic solid,
with symmetry plane x–y is written:
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Then the following relations hold:

Fig. 1. A granite semi–sphere in sliding contact with a transversely isotropic vis-
coelastic half space is shown schematically. The contributions to friction from
(i) shearing of a thin modified surface layer (τf ) and (ii) hysteresis in the bulk of the
rubber are demonstrated.
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