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a b s t r a c t

Fluid inertia can have a major effect on the pressure distribution in hydrodynamic bearings with surface
texturing. So far, however, the effect has been ignored in the simulation of finite bearings. In this work,
we develop a spectral element solver for the Navier–Stokes equations specifically tailored to slider finite
bearings textured with multiple spherical dimples. Using the solver, we studied the effect of inertia on
the load-carrying capacity for 90 different bearing configurations. Our results show that the spatial
arrangement of dimples has a significant impact on the inertia effect. For the Reynolds number 50 and
the ratio 10 of dimple length to dimple depth, a change from full to partial texturing reduced the effect
by roughly 85%.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrodynamic lubrication is an effective way of reducing friction
and wear at the contact between two surfaces in relative sliding [1].
One way to form the lubricating film is to texture the surfaces with
dimples [2–5]. For certain combinations of the ratio D of dimple
length to dimple depth and the Reynolds number Re (roughly Do50
for Re430), the lubricant flow transits from purely viscous to visco-
inertial [6–8]. This renders the Reynolds equation of viscous
lubrication inadequate to simulate the lubricant flow. To rectify this
problem, full Navier–Stokes equations (NSE) have been employed
instead. However, due to substantial computational effort required
to solve the equations in three dimensions (3-D) for complex
geometries, studies of the visco-inertial flow in hydrodynamic
bearings have been limited to single dimple configurations [8]. In
addition, periodic boundary conditions have been used; causing a
dependence of results on the location and value of the reference
pressure used in solving the NSE [6].

In the current work, we develop a spectral element solver for 3-D
NSE that governs the lubricant flow in hydrodynamic bearings with
multiple dimples. The solver decomposes the computational domain
of the bearing into a small number of pre-defined elements. For each
element, a discrete and independent NSE is obtained using the
spectral element method (SEM) [9] and a specifically designed Schur
complement of the Jacobian matrix. The solution of the NSE for the

entire computational domain is obtained by combining the solutions
calculated for individual elements, reducing the computational time.
Using the solver we conducted a systematic study on the inertia
effect in hydrodynamic bearings for 90 different combinations of
dimples and the Reynolds numbers, i.e.: 90¼15 (spatial arrange-
ments of dimples)�3 (ratios of dimple length to its depth 10, 50
and 100)�2 (Reynolds numbers 1 and 50). Other effects such as
mass-conserving cavitation and temperature are not studied since
they would considerably complicate the numerical simulations. For
this reason, a simple Gumbel (half-Sommerfeld) cavitation bound-
ary condition is employed while the effect of temperature on
lubricant viscosity is ignored.

2. Methods

For hydrodynamic bearings with laminar and steady flow, and
Newtonian, incompressible and isoviscous lubricant, the governing
equations consist of the NSE and mass continuity equation
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where ρ and μ denote the density and dynamic viscosity of the
lubricant, p is the pressure function, and u, v and w are the velocity
functions in the x, y and z directions, respectively. The unknowns
are the pressure and velocity. For the equations to have a unique
solution, it is necessary to specify appropriate boundary conditions.
In this work, the pressure is set to zero on the boundaries that do
not correspond to the bearing surface and the velocity is set to zero
(the sliding velocity U) at the boundary that corresponds to the
stationary top (sliding bottom) bearing surface (Fig. 1).

In this study, the bearing performance is defined as the load-
carrying capacity Wþ

W þ ¼∬Apþdxdy; ð2Þ
where pþ ¼ maxðp;0Þ, A denotes the area of the sliding surface
and it is assumed that the sliding is in the x direction. The reason
for using the load-carrying capacity is that inertial flow mostly
affects the pressure distribution [6,7]. The integration is over the
positive part of the pressure distribution in Eq. (2) since the
Gumbel boundary condition is used in this study.

2.1. Spectral solver

The spectral solver developed in this work first discretises the
governing Eqs. (1a)–(1d) into a system of nonlinear algebraic
equations using the SEM, and then provides the solution of the
system using the Newton's method with preconditioning.

2.1.1. Discretization of the governing equations
Discretization of the governing equations is performed in four

steps. First, the governing equations are discretized in a reference
domain (i.e., a domain that is independent of the bearing geome-
try). Next, a physical domain is decomposed into a small number of
pre-defined elements. Transformations from the reference domain
to each element are then calculated and a system of nonlinear
algebraic equations is produced.

2.1.1.1. Discretization in reference domain. 3-D reference domain is
defined as a cubeΩ*¼[�1,1]3 with the Cartesian coordinates x*, y*,
z*A[�1,1]. For the x* (y* and z*) coordinate, a set of points x*,k¼1,…,
K (y*,m¼1,…,M and z*,n¼1,…,N) is chosen based on the nodes of the
Gauss–Legendre–Lobatto (GLL) quadrature. Example of the domain
for K¼4, M¼5 and N¼6 is shown in Fig. 2. The points are then
used to construct a set of Lagrange polynomials lx,k(x*) (ly,m(y*) and
lz,n(z*)) of degree K�1 (M�1 and N�1) in a such way that the k-th
(m-th and n-th) polynomial equals to one at x*,k (y*,m and z*,n) and
to zero at the remaining points. Using the polynomials, the velocity

function in the x direction is approximated as

uðxn; yn; znÞ � ûðxn; yn; znÞ ¼
XK
k ¼ 1

XM
m ¼ 1

XN
n ¼ 1

ukmnlkmnðxn; yn; znÞ; ð3Þ

where ukmn denotes the unknown values to be found and lkmn(x*,y*,
z*)¼ lx,k(x*)ly,m(y*)lz,n(z*). The velocity functions in the y and z
directions and the pressure function are approximated similarly.
The approximations are then substituted in Eqs. (1a)–(1d) and put
into a weak form according to the Galerkin formulation [9]. For first
Eq. (1a) the form and the subsequent discretization steps are given
by
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∂z2

n

� �
þ ∂p̂
∂xn

� �
lrstdΩn ¼ 0;

ð4Þ
where dΩ* is the volume differential and lrst denotes the same set
of polynomials as lkmn except that the indices r¼1,…,K, s¼1,…,M
and t¼1,…,N are independent of k, m and n. Eq. (4) must be
satisfied for all values of the indices r, s and t. Eqs. (1b)–(1d) have
similar weak forms. The last step of the discretization in the
reference domain is the reduction of the order of derivative in
the diffusion term using the divergence theorem
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∂x2

n

þ∂2û
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where S* denotes the reference domain boundary, dS* is the
differential element of area and [nx*,ny*,nz*] is the unit normal
vector pointing outward from the reference domain. Substituting
Eq. (5) into Eq. (4) gives the final form of the discretized Eq. (1a) in
the reference domain.

2.1.1.2. Decomposition of physical domain into elements. The
physical domain of the bearing is decomposed in two steps. First,
the domain is decomposed into a grid of 5�5 cells (Fig. 3a). The
cells represent the lubricant volume between the stationary top
and sliding bottom bearing surfaces. For each cell, the top surface is
either flat or textured with a single spherical dimple and the
bottom surface is flat. Second, each cell with textured (flat) top
surface is decomposed into five (one) elements (Fig. 3b). The
decomposition of the textured cell ensures that the top surface of
each element is smooth, increasing the accuracy of spectral
approximation [9,10] and the overall number of grid/mesh points
is kept as low as possible by means of a trade-off between the
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Fig. 1. A schematic diagram of square hydrodynamic slider bearing. (a) Top view showing the grid of 5�5 cells with the top surface of each cell either flat or textured with
an elliptical dimple. (b) Side view showing the geometry of dimples. Ldimple and hdimple denote the length and depth of a dimple and hmin is the minimum film thickness.
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