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a b s t r a c t

Sliding friction can lead to unstable vibration. This vibration can be unwanted, e.g. brake noise, or
wanted, e.g. in violin strings. Several excitation mechanisms of friction-induced vibration are known, but
still not all excitations observed in practice can be explained. Moreover, many experiments show that
friction itself is highly dynamic and is by far more complex than a friction law with velocity-dependency
implies.

We show how the stability of an oscillator sliding on a belt will change, if a dynamic friction law with
inner variable is considered instead of a velocity-dependent coefficient of friction. Unstable vibration can
even be found in the case of a positive velocity-dependency of the coefficient of friction.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In tribological systems many mechanisms are known that
lead to friction-induced vibration. It is widely accepted that
a one-dimensional oscillator sliding on a belt can perform
friction-induced vibration if the coefficient of friction decre-
ases with increasing relative velocity between oscillator and
belt. However, some cases are known in which a constant
or even positive friction characteristic can excite vibration.
These mechanisms are moving mass excitations [1], param-
eter excitations [2,3], mode-coupling [4,5], sprag-slip [6] or
nonlinearities [7]. All these mechanisms require the considera-
tion of additional mechanical degrees of freedom and cannot be
modelled by only one mechanical degree of freedom. Moreover
many approaches ignore that friction itself is highly dynamic and
depends on sliding velocity, pressure, temperature and friction
history itself. Some friction laws consider this by introducing
inner degrees of freedom to the friction laws [8–11]. This
dynamic friction will interact with a vibrating structure. For this
interaction a simple velocity-dependent friction characteristic
can fail in predicting the stability of the system vibration. In this
work we investigate the impact of a friction law on an oscillator,
where friction considers history, temperature and sliding
velocity.

2. Model with a dynamic friction law

To investigate the influence of friction dynamics on a dynamic
system, we apply a one-dimensional oscillator moving parallel to
the sliding surface, as it has been studied multiple times. A
dynamic friction law is considered in the contact between oscil-
lator and belt, Fig. 1.

The oscillator position x is described with respect to an
arbitrarily chosen reference position. To ensure continuous sliding
and to avoid the stiction mode, the belt velocity v40 is chosen
sufficiently high v4� _x. So the equation of motion yields

€xþω2 � x¼ �nμ: ð1Þ

Here ω40 is the angular eigenfrequency of the oscillator and
μ40 is the coefficient of friction. The variable n40 is a measure
for the normal force between the oscillator and the belt, which can
be obtained by the normal force divided by the mass of the
oscillator. In the following derivation, damping is not introduced.
Additional damping will have a simple stabilizing effect in the
context of this investigation.

To model the dynamic friction behaviour, a friction law intro-
duced by Ostermeyer [11] is applied. This friction law was derived
from investigations of dynamic processes on the surfaces of sliding
brake pad and brake disc. Here on at least one surface of the two
sliding bodies a process of continuous growth and destruction of
mesoscopic thin hard structures was observed. These structures
consist of wear debris, which is compacted at positions of local
maxima of temperature and pressure. The quantity and surface
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covering ratio of these thin hard structures have a direct impact on
the coefficient of friction. This impact was cast into a macroscopic
dynamic friction law [11], which is applied here in a linearized
form:

_μ ¼ �a � μ�μ0�cT
� � ð2Þ

_T ¼ �b � T�T0�nd vþ _xð Þð Þ: ð3Þ

In this friction law, the coefficient of friction and the interface
temperature T are described by coupled ordinary differential
equations. The friction equation (2) allows a first-order lag
behaviour of the coefficient, as it has been observed in experi-
ments for example in [8,10,12]. The saturation time is determined
by coefficient a40. This coefficient requires a positive value to
avoid instability in the friction law. Here μ0 is the reference
coefficient of friction at T¼0. Parameter c scales the influence of
the interface temperature T on the coefficient of friction. The
temperature behaviour, Eq. (3), can be approximated by a differ-
ential equation with time constant b40. T0 is the ambient
temperature and d40 scales the energy which is produced by
friction with relative sliding velocity vrel ¼ vþ _x. The friction law
can be applied in sliding systems with mesoscopic thin hard
structures, e.g. in brake, clutch or grinding systems, and beyond
in more general frictional applications. Studies of the dynamics in
this friction law and comparisons to measurements are published
e.g. in [12,13].

The entire dynamic system is described by Eqs. (1)–(3) with
different parameters. In this system of equations, the following
parameters are positive:

a40

b40

d40

n40

ω40: ð4Þ

3. Results with a quasi-static friction law

In many tribological tests, the coefficient of friction is deter-
mined at different sliding velocities. In this kind of experiment, a
constant sliding velocity v is chosen. After the measured coeffi-
cient of friction converged against a static value, this value is
assumed as the coefficient of friction at a specific sliding velocity.
This static coefficient of friction can be obtained from the dynamic
friction law in Eqs. (2) and (3) for _μstat ¼ _T stat ¼ 0 and provides a
static coefficient of friction of

μstat ¼ μ0þcT0þcnd vþ _xð Þ: ð5Þ
By the choice of c and cnd every desired linearized dependency

on temperature and sliding velocity can be described. This for-
mulation is called ”quasi-static” friction law, as it still contains a
velocity-dependency, but only for the stationary solution of
Eqs. (2) and (3). Inserting this equation into the oscillator equation
and rearranging terms lead to

€xþn2cd � _xþω2 � x¼ �n μ0þc T0þndvð Þ� �
: ð6Þ

In the following, theory of stability at a point of rest is applied to
describe the appearance of friction-induced vibration: ”unstable”
refers on the rise of vibration while ”stable” describes a solution
decaying to zero amplitudes. Obviously, solution (6) is stable for
c40 and unstable for co0, as Fig. 2 underlines.

4. Results with dynamic friction law

As the static measurement of the coefficient of friction at a
specific sliding velocity v ignores the transient change of friction, it
can ”hide” the dynamics of the friction law, which is described in
Eqs. (2) and (3). This effect becomes significant, if a system vibrates
with its eigenfrequencies. The vibration causes changes in the
relative velocity in the sliding interface, which will in turn trigger
different dynamics of the friction law. To investigate how this
dynamics can lead to increasing vibrations, a stability analysis is
carried out.

For stability evaluation, the friction law and the dynamics of
the oscillators can be written in one state space formulation for
small disturbances at the point of rest

d
dt

μ
T

x
_x

2
6664

3
7775¼

�a ac 0 0
0 �b 0 ndb

0 0 0 1
�n 0 �ω2 0

2
6664

3
7775

μ
T

x
_x

2
6664

3
7775 ð7Þ

and stability can be discussed in terms of eigenvalues. The four
complex eigenvalues λi of the system

_u ¼M u ð8Þ

are the roots of the corresponding characteristic polynomial:

det M �λiI
� �

¼ 0: ð9Þ

To reduce the number of parameters to be evaluated, the
system is transferred into a dimensionless form by introducing

Λi ¼
λi
ω

A¼ a
ω
40

B¼ b
ω
40

C ¼ n2cd
ω

with sign Cð Þ ¼ sign cð Þ: ð10Þ

This is especially valuable, as in practical applications it is
expensive to experimentally determine the different parameters in

Fig. 1. Oscillator with dynamic friction law.

Fig. 2. Velocity-dependency of a quasi-static friction law and expected stability or
instability of the system.
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