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a b s t r a c t

This paper presents a new model for analysis of non-conformal rough surface contacts where one or
both of the contacting bodies are coated with a multilayered coating. The model considers elastic contact
of arbitrary geometry with real measured roughnesses and both normal and tangential surface loads. It
predicts contact pressure distribution, surface deformations and full subsurface stress field. As such, the
model offers an optimisation tool for analysis and development of multilayered coatings. Influence
coefficients approach is utilised to obtain contact pressures and subsurface stresses while the contact
solver is based on a standard conjugate gradient method. To improve model efficiency, a semi-analytical
approach is devised, where the influence coefficients for displacements and stresses are expressed
explicitly by solving the fundamental equations in the frequency domain. Fast Fourier Transforms in
conjunction with discrete convolution are then utilised to provide the solution in spatial domain.
Selected results are presented to first validate the model and then illustrate the potential improvements
that can be achieved in the design of multilayered coatings through application of the model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Surface coatings are widely employed in tribological components
with the primary aim of protecting contacting surfaces from damage
and/or reducing friction, particularly under poor lubrication condi-
tions. Bearings, piston rings, fuel injectors and cams and followers
are some of the mechanical components which were of tribological
coatings and are often employed. Relative to a homogenous contact,
the presence of a coating in general modifies the contact mechanics
in two ways: contact pressures and areas are either increased or
decreased depending on the coating properties relative to the
substrate and the subsurface stress fields are modified not least
due to the mismatch in elastic properties of the coating and the
substrate. When carefully controlled, such changes can offer super-
ior contact performance but when poorly understood they can lead
to premature failure of coated contacts through mechanisms that
may not have been expected in the equivalent homogenous contact,
such as fracture, fatigue and delamination. Many modern coatings
possess a multilayered structure, where the properties of each
coating layer can be chosen to optimise the prevalent contact
mechanics for improved tribological performance of the overall
coating in terms of reduced friction and wear and extended
durability. Such multilayered structures can therefore offer advan-
tages over a single layer coating, but they also produce even more
complex contact stress fields which need careful consideration.

Accordingly, to maximise the benefits offered by multilayered coat-
ings as well as minimising the risk of unexpected failures through
undesirable stresses, a contact model which is able to predict
contact pressures, deformations and subsurface stresses in rough
multilayered contacts is needed.

The earliest contact model for coated surfaces was that of
Burmister [1] who, as part of his studies into airport runway surfaces,
produced a model for three-dimensional, single layered, smooth
contacts subject to normal load. Over the following half a century
several authors produced single-layered models capable of dealing
with various levels of complexity. Dundurs [2] considered a smooth
two-dimensional contact of coated surfaces and proposed two non-
dimensional parameters to describe the material mismatch between
the coating and the substrate. Gupta and Walowit [3] utilised Fourier
transforms of Airy stress functions to provide a solution for deforma-
tions and stresses in a coated contact subject to unit pressure loading
at the origin, which can then be utilised as an influence function for
the said contact. O’Sullivan and King [4] included both normal and
tangential loading in an influence coefficient based model, while
Komvopulos and co-workers [5] used finite element methods to
study a similar contact configuration. Nogi and Kato [6], Kannel and
Dow [7] and Cole and Sayles [8] provided full contact solutions for a
layered contact of rough surfaces while others, such as Kadiric and
co-workers [9], Ju and Chen [10] and Leroy et al. [11] also considered
in-contact thermal effects of the coating.

In recent years the layered contact analyses have been extended to
include multilayered coating systems. Chen [12] used Fourier integrals
to extend the single layered model of Burmister [1] to smooth bodies
containing up to two layers. Elsharkawy and Hamrock [13] utilised the
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Gupta and Walowit [3] solution to develop a model for a dry, sliding
contact between two elastic bodies coated with a number of thin
layers, both bodies possessing the same layer system. Their model is
limited to two-dimensional contacts of two ideally smooth bodies
while results are presented for contacts with up to two coating layers.
A similar approach to that presented in this paper was used by
Plumet and Dubourg [14], where the influence coefficients were first
obtained for a multilayered contact in frequency domain by utilising
Fourier transforms. Their method is limited to two smooth bodies,
one of which is rigid and elliptical, while the presented results
consider single-layered systems only. Cai and Bhushan [15,16] con-
sidered one and two layered systems utilising Papkovich–Neuber
potentials to obtain influence coefficients and minimum complimen-
tary energy principle to obtain the contact solution. They present
results focusing on the effect of the material properties of the
intermediate layer in a two layered coating.

It is worth noting that in parallel to coated contacts, contacts of
functionally gradedmaterials (FGM), another class of inhomogeneous

materials where material properties vary continuously with depth
instead of having distinct layer interfaces, have also received atten-
tion in the literature. Giannakopoulos and Pallot [17] and Ke and
Wang [18,19], amongst others, produced two dimensional models for
smooth contacts of FGM materials where Young's modulus varied
continuously with depth. Choi et al. [20] on the other hand used
finite element methods to model plastic indentation of smooth
plastically graded materials.

From the discussion above it is evident that the existing multi-
layered contact models all suffer from one or more limitations in
terms of either the number of layers they consider (generally one or
two), the type of loading (commonly limited to normal load only) and/
or the contact geometry (often only two dimensional line contacts or
smooth bodies are considered). The current model attempts to address
these deficiencies by providing an efficient semi-analytical contact
model that considers two elastic bodies with any number of coating
layers, normal and tangential loading, real rough surfaces and arbitrary
(non-conformal) contact geometry. With the aim of illustrating the

Nomenclature

Aw Influence coefficient matrix for surface displacements, Wη¼0

As Influence coefficient matrix for general stress, S
A(k), B(k), C(k), D(k), F(k) and H(k) Solution constants. Superscript (k) indicates the layer
E(k) Young's modulus for layer k (Pa)
En(1) Equivalent elastic modulus based on properties of counter-face and layer (1), Enð1Þ ¼ 1�ν2counterf ace

Ecounterf ace
þ1�νð1Þ2

Eð1Þ

� ��1

K ðkÞ K ðkÞ ¼ � λðkÞ þ3μðkÞ

EðkÞðλðkÞ þμðkÞÞ
L Load (N)
PHertz Maximum Hertz pressure (Pa)
S Stress (Pa)
U, V, W Normalised displacements, u/l, v/l, w/l respectively in x-, y-, z- direction
aHertz Hertz contact semi-width
fr Friction coefficient
h(k) Thickness of layer k (m)
i

ffiffiffiffiffiffiffiffi
�1

p

l Semi-width in x and y directions of the surface discretisation patch (m)
n Number of layers, excluding the substrate
p Contact pressure (Pa)
s, r Fourier transform variables for ξ and γ directions respectively
x, y, z Spatial coordinates (m)
αD ¼ Γ κS þ1ð Þ� κL þ1ð Þ

Γ κS þ1ð ÞþκL þ1 ; βD ¼ Γ κS �1ð Þ� κL �1ð Þ
Γ κS þ1ð ÞþκL þ1 Dundurs' parameters where Γ ¼ EL 1þνSð Þ

ES 1þνLð Þ, κS ¼ 3�4νS, κL ¼ 3�4νL(subscripts ‘s’ and ‘L’ indicate
substrate and coating in a single layered coating system).

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr2

p

ξ, γ, η Normalised spatial coordinates; x/l, y/l and z/l
λ(k) Lame's first constant ¼ EðkÞνðkÞ

ð1þνðkÞÞð1�2νðkÞÞ

� �
for layer k, (Pa)

μ(k) Lame's second constant ¼ EðkÞ

2ð1þνðkÞÞ

� �
for layer k, (Pa)

ν(k) Poisson's ratio for layer k
σij Stress tensor (Pa)

Subscripts

i, j, k, l, m Indices of the mesh positions in the discretised 3D domain
t loop counter in the iterative process

Superscripts

(k) Indicates the coating layer k

Other symbols

E when placed over variable symbol, indicates double Fourier transformed variable in ξ and η directions
Δ Biharmonic operator ¼ ∂2

∂x2þ ∂2
∂y2þ ∂2

∂z2
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