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a b s t r a c t

Fretting-fatigue strengths of 12%-chromium steel with different static strengths were evaluated quantita-
tively by applying fracture mechanics considering the effects of small crack and mean stress on the
threshold value of stress-intensity factor range, ΔKth. Crack-propagation behavior was investigated by
obtaining non-propagating crack lengths of run-out specimens and ΔKth from fretting pre-cracks under
several stress ratio, R values, including negative mean stress. It was confirmed that test results concerning
fretting fatigue strength can be successfully explained by applying maximum-tangential-stress theory.
Cracks were confirmed to propagate in stage II at an angle at which the maximum stress-intensity factor
range occurred. This model also confirmed the experimental result that the depth of non-propagating cracks
decreases as mean stress and material strength increase.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fretting-fatigue strength is mostly determined by whether
small cracks propagate when cracks are easily initiated in a local
high-stress area. Hence, applying fracture mechanics is expected
to be effective for evaluating fretting fatigue strength [1–7]. By
means of these methods, the fretting fatigue limit is predicted by
evaluating whether the stress-intensity factor range, ΔK, is greater
than its threshold value, ΔKth. A model for evaluating micro-crack
propagation, which is shown in Fig. 1, was developed by Kondo [4].
According to this model, when ΔK is lower than ΔKth at a certain
crack depth, the crack is thought to stop propagating and remain
as a non-propagating crack (marked by “О” symbol in the figure).
On the other hand, when ΔK is larger than ΔKth along the entire
crack length, the crack is thought to propagate to failure. The
objective of this study is to evaluate fretting-fatigue strength
quantitatively by using this model under various test conditions,
including different material strengths and mean stresses.

The following two major difficulties need to be addressed when
quantitatively applying the micro-crack propagation model:

(1) Effects of small crack size and mean stress on ΔKth,
(2) Mixed modes of (tensile and shear) ΔK.

Regarding the effect of small crack size on ΔKth, El Haddad [8]
proposed a correlation factor, a0, for crack length, a, and a

threshold for ΔK of a long crack, ΔKth, l, expressed as

ΔKth ¼ΔKth; l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ðaþa0Þ

p
ð1Þ

The empirical rule proposed by Murakami [9], namely, ΔKth is
proportional to the one-third power of the square root of the
micro-crack surface area is also well known. Although these
approaches are effective in estimating ΔKth for micro cracks, there
are few data on the effect of mean stress on micro-crack ΔKth [10],
especially under a high negative stress ratio (R), which is indis-
pensable in evaluating the fretting fatigue strength.

Mixed-mode (tensile and shear) ΔK should be considered
because most fretting-fatigue cracks incline under multi-axial
stress fields caused by the contact pressure and tangential force
[11–13]. According to Mutoh [14], as shown in Fig. 2, the crack path
of fretting fatigue is classified into two stages (called “I” and “II”).
Stage I is the initial crack stage, in which a crack inclines greatly
against the normal direction, and stage II is the crack-propagation
stage, in which the crack propagates in the direction perpendicular
to the maximum principal stress.

As many researchers have stated [15–17], maximum-tangential-
stress theory is considered to be effective for expressing the crack
propagation in stage II; hence, one problem is how to model crack
propagation in stage I. To solve this problem, Pook's failure-
mechanism map [18] in the ΔKI�ΔKII plane can effectively separate
crack propagation patterns into shear and tensile modes. Although it
was proposed to define equivalent stress-intensity factors, such as
(ΔKI2þ8ΔKII2)1/2 based on the strain-energy release rate, and
(ΔKI4þ8ΔKII4)1/4 from Tanaka [19], no unified model applicable to
various test results [20] has been developed. In summary, regarding
the studies on mixed modes, it is difficult to explain the crack
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propagation in stage I because it is difficult to experimentally obtain
the mode II thresholds [21] and quantitatively estimate the actual ΔKII
in consideration of crack-surface-friction effects [22].
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Fig. 1. Schematic of small-crack propagation model at fretting fatigue.
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Fig. 2. Schematic view of fretting crack propagation.

Table 1
Mechanical properties of materials.

0.2% Proof
stress (MPa)

Tensile
strength
(MPa)

Elongation
(%)

Reduction
of area (%)

Vickers
hardness
(Hv)

Sample
A

610 745 26.3 65.5 238

Sample
B

842 1037 15.4 51.0 329
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Fig. 3. Shapes of specimens and test apparatus: (a) specimen, (b) contact pad, and (c) test apparatus.
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Fig. 5. Side view near contact edge of failure specimen. (Sample A: sm¼0 MPa,
sa¼150 MPa).
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Fig. 4. S–N diagram of fretting fatigue tests.
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