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a b s t r a c t

Technology allows the production of advanced (heterogeneous) materials controlling properties on an
increasingly local scale, e.g. layered, graded, granular and fiber-reinforced. In this paper the efficiency of
the Multigrid method for 3D stress calculation involving such materials is investigated. Results are
validated using model problems and the full potential is demonstrated for two representative problems.
The developed algorithm facilitates solution of 3D problems with high accuracy and dense grids on
standard computers. It has excellent prospects for use in performance prediction, analysis and numerical
(local) design optimization in tribology and contact mechanics.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical simulations nowadays play a significant role for the
design and optimization of structures and machine elements.
Advanced technology of material production allows control of the
microstructure of materials at an increasingly detailed level, to create
components with a tailored distribution of (local) properties, e.g.
coated, graded, granular, porous, fiber reinforced and composite
materials. The analysis and the prediction of the behavior of machine
elements or structural elements made up of heterogeneous materials
under different operating conditions (mechanical and thermal) is a
topic of study in many areas in engineering, e.g. in material science,
biomechanics, structural mechanics, contact mechanics and tribology.

In many studies the development of computer simulation
methods is described. For example, Roux [1] and De Roeck et al.
[2] developed methods in which the (many) subdomains with
different properties are considered separately, and linked via
interface conditions which ensure the continuity of the displace-
ments. In [3] this continuity is imposed through Lagrange multi-
pliers [3]. Molinari et al. [4,5] and Sadeghi et al. [6–8] developed
approaches to determine stress and strain fields in polycrystalline
materials. There are many other examples in the engineering
literature.

These studies have demonstrated that the investigation of local
phenomena in heterogeneous materials, e.g. in a small volume
composed of grains, is feasible, with today's computer methods
and fast computers. However, the geometrical complexity of the

local structure and the need for an accurate solution require the
use of a very fine discretization (element mesh). Especially for
three-dimensional problems this leads to large systems of equa-
tions with (many) millions of unknowns which, using standard
methods of e.g. (band)matrix inversion, require large computing
times to solve. The use of supercomputers and extensive paralle-
lization alleviates this problem but, to bring these methods to
application as a computational tool for design and optimization in
an engineering environment, much more efficient and faster
solution methods are needed so that realistic problems can be
solved on small scale computers.

Multigrid techniques were introduced in the early seventies by
Brandt [9] for scalar elliptic equations and have since been applied
and further developed to many fields in science and engineering.
The techniques have the prospect of solving a problem in a
computing time proportional to the number of degrees of free-
dom, which makes them well suited for 3D problems. An intro-
duction to Multigrid is given in [10]. Advanced reading can be
found in [11–13]. For applications in structural mechanics see
e.g. [14].

The concept is to use (simple) iterative solvers and to obtain
very fast convergence and high efficiency by the design of an
efficient way to approximate and solve the slow to converge error
components using a coarser scale. For elliptic problems these are
generally smooth error components for which coarser grids are
used, hence the name Multigrid. The coarser scales may also be
generated from the original system of equations in what is called
Algebraic Multigrid (AMG) as opposed to geometric Multigrid.
AMG algorithms are less problem specific and can be applied to
general problems only specified in matrix vector form. However,
they are also computationally more expensive.
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The objective of the present study is to develop a fast efficient
solver to deal with 3D strongly heterogeneous elastic problems
based on geometric Multigrid techniques for use in heterogeneous
material analysis, optimization and design, and computational
diagnostics. In previous work, Boffy et al. [15] demonstrated the
efficiency for computing the stress field in materials subjected to
an imposed contact pressure for coated and graded materials with
low property ratios. However, with increasing property ratios the
efficiency of standard geometric Multigrid deteriorates. In this
paper it is explained how efficiency can be retained when the
property variations are large.

First, the Lamé equations for 3D solids with arbitrary graded
elasticity are described and the relevant details of the Multigrid
algorithm are explained. To demonstrate the accuracy first results
are presented for characteristic problems taken from the literature.
Next, to demonstrate the real potential of the developed algorithm
results are presented involving heterogeneous media with small
and large mechanical property ratios. Two cases are considered:
an application from contact-mechanics of a granular material with
interstitial matter subjected to an external pressure, and the
analysis of a (piece of) fiber reinforced material in which the fiber
orientation is varied. The results demonstrate the efficiency of the
developed algorithm allowing detailed simulations in 3D to be
carried out on a small scale single processor computer. The
developed algorithm has great potential to contribute to the
analysis, design and optimization of new materials.

2. Theoretical model

The 3D heterogeneous linear elastic problem can be described
as the solution of the unknown displacements u, v and w in a 3-D
domain Ω from the Navier–Cauchy equations:

ðλuj;jÞ;iþðμui;jÞ;jþðμuj;iÞ;j ¼ 0; i; j¼ 1;2;3 ð1Þ

where λ and μ are the Lamé coefficients, which are assumed to
vary as a function of space

λðx; y; zÞ ¼ Eðx; y; zÞνðx; y; zÞ
ð1þνðx; y; zÞÞð1�2νðx; y; zÞÞ ð2Þ

μðx; y; zÞ ¼ Eðx; y; zÞ
2ð1þνðx; y; zÞÞ ð3Þ

Typically, Ω will be taken as a 3-D rectangular domain,
representative of a section of a heterogeneous material.

Assuming a Cartesian coordinate system, for the case of i¼1,
Eq. (1) can be written as
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On the boundary ∂Ω of the domain, both Neumann and
Dirichlet boundary conditions (BC) can be considered, depending
on the specific application, i.e. imposed stress/friction at a surface
or free displacement, or imposed displacement.

3. Multigrid numerical solution

The system of equations was discretized on a uniform grid with
mesh size h in each spatial direction. This choice was motivated by
simplicity and memory efficiency. A finite difference discretization
was used of second order accuracy, with the equations and each of
the unknowns defined at the grid points (see Appendix). This
choice is adequate for most practical materials with Poisson ratio's
0:25rνr0:45. For nearly incompressible materials (ν� 0:5Þ the
discretization should be a staggered configuration to avoid spurious
oscillations, see [11,16]. Let the system of equations be written as

Lhuh ¼ 0 on Ωh ð5Þ
where Lh is a matrix and uh is a vector containing the displacements
to be solved in the grid points. The solution of uh using direct
methods requires an amount of work Oðb2NÞ where b is the
bandwidth of the matrix and N the total number of unknown.
Usually b¼ OðNðd�1Þ=dÞ which leads to excessive computing times
for 3D problems with dense grids. Iterative methods such as Gauss–
Seidel relaxation are also computationally expensive, because of
slow convergence. Components which are near the eigenspace of
the matrix (operator) converge at a rate strongly decreasing with
the mesh size. For elliptic problems these are the smooth error
components. High frequency error components on the other hand
are very efficiently reduced. Geometric Multigrid techniques exploit
this behavior by introducing a sequence of coarser grids to resolve
the slow to converge smooth errors at coarser grid where this can
be done more efficiently and use the result to correct the fine grid
solution, see Fig. 1. This coarse grid correction concept is applied
recursively yielding a coarse grid correction cycle using multiple
grids which has grid independent fast convergence. Multigrid
algorithms are not black-box solvers. Various aspects need to be
considered carefully to achieve good efficiency. These aspects of
(geometric) Multigrid algorithm development for the 3D elasticity
problem are discussed below.

3.1. Relaxation

The iterative process used should reduce all error components
that cannot be seen on the coarse grid with H¼ 2h where H is the

Nomenclature

Ex;y;z Young's modulus
P0 maximum Hertzian pressure
a0 Hertzian contact radius
i; j; k index in x–y–z direction

u; v;w displacements in x–y–z direction
λx;y;z;μx;y;z Lamé coefficients
Lx; Ly; Lz volume dimensions in x–y–z direction
h grid spacing
Ω computational domain
∂Ω boundary of the domain

Fig. 1. Generic representation of a Multigrid V-cycle 2 levels with interpolation IhH
and restriction IHh operators. ν1 and ν2 are respectively the numbers of relaxations
used to smooth the error before coarsening and remove errors introduced by the
interpolation of the correction. ν0 ¼ ν1þν2. LH and Lh represent the operators used
to solve the equations on the coarse and fine grid respectively.
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