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a b s t r a c t

Background: It is common to use nonrepresentative samples in observational epidemiologic studies, but
there has been debate about whether this introduces bias. In this article, we consider the consequences
on noncollapsibility of a sample selection related to a relevant outcome-risk factor.
Methods: We focused on the odds ratio and defined the noncollapsibility effect as the difference between
the marginal and the conditional (with respect to the outcome-risk factor) exposure-outcome associa-
tion. We consider a situation in which the aims of the study require the estimate of a conditional effect.
Results: Using a classical numerical example, which assumes that all variables are binary and that the
outcome-risk factor is not an effect modifier, we illustrate that in the selected sample the non-
collapsibility effect can either be larger or smaller than in the population-based study, according to
whether the selection moves the prevalence of the risk factor closer to or away from 50%. When the
outcome-risk factor is also a confounder, the magnitude of the noncollapsibility effect in the selected
sample depends on the effects of the selection on both noncollapsibility and confounding.
Conclusions: When a key outcome-risk factor is unmeasured, in presence of noncollapsibility neither a
population-based nor a selected study can directly estimate the conditional effect; whether the
computable marginal is closer to the conditional in the selected or in the population-based study de-
pends on the underlying population and the selection process.

� 2015 Elsevier Inc. All rights reserved.

Introduction

It is common to use nonrepresentative source populations (i.e.
those that are not based on the general population of a defined
geographical area) in observational epidemiologic research, but
there has been considerable debate about whether this introduces
bias and to what extent [1e6]. In a recent article on this topic,
Rothman et al. [1] emphasized the difference between descriptive
studies that describe the specific population in which they are
conducted and therefore should rely on representative samples,
and studies that aim at “explaining how nature works” and thus
focus on scientific inference with no need of representativeness.
Ideally, a scientific finding should not be limited to a particular
context, but should be applicable (given certain assumptions) to
other populations and time periods (see Pearl and Bareinboim [7]
for a formal approach on how to transport effects from one popu-
lation to another). Here, we discuss the consequences of non-
representativeness in relation to noncollapsibility, which involve

considering the consequences when the selection of the study
sample is related to a risk factor for the outcome.

When a binary outcome is not rare and there is a casual effect of
an exposure on the outcome, effect measures that are not risk ratios
or risk differences, for example, odds ratios (ORs) or rate ratios, are
noncollapsible. Formally, a measure of association between an
exposure and the outcome is strictly collapsible across a third
variable if the marginal effect measure is a weighted average of the
stratum-specific (based on the third variable) effect measures [8,9].
On the contrary, in presence of noncollapsibility, the marginal and
the conditional effects might differ even when the third variable is
neither a confounder nor an effect modifier. It should be empha-
sized that both the marginal and the conditional effects are inter-
pretable, but only the former is affected by the population-specific
distribution of the risk factor. Clearly, the appropriateness of the
marginal or the conditional effect depends on the causal structure
of the problem investigated and the aim of the study [10]; however
in general, if the aim of an epidemiologic study is not descriptive,
but is scientific inference, then the conditional effect is more likely
to be generalizable and is often the one of main interest. Typically,
however, some of the outcome risk factors are unmeasured or
unknown, and therefore, only the marginal effect, with respect to
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the unmeasured/unknown risk factors, can be estimated in the
study, even if we were interested in the fully conditional effect
(with respect to these risk factors). Under this scenario and
assuming no confounding and no effect modification due to these
unmeasured/unknown risk factors, when using ORs or rate ratios,
the error that we would commit in interpreting the marginal esti-
mate as the conditional one depends on the magnitude of the
noncollapsibility effect, that is, the difference between the marginal
and the conditional estimate.

In an influential article, Greenland et al. [8] discussed issues of
noncollapsibility in epidemiologic studies and described the dif-
ference between lack of collapsibility and confounding, providing
numerical examples. In our article, we will start from these exam-
ples to examine the situation of a nonrepresentative study and to
describe the impact of the selection on the noncollapsibility effect,
in the specific scenario when the selection is related to an un-
measured and/or unknown outcome risk factor.

Methods

We first consider a scenario involving the effect of an exposure
(X) on the outcome (Y) in presence of a risk factor (Z) for Y. This
simple scenario is described in Figure 1A, using directed acyclic
graphs (DAGs). We focused on the OR, assumed that Z is not an
effect modifier on the OR scale, and calculated both the marginal
and the conditional (with respect to Z) X-Y associations.

We start with the numerical example presented in Greenland
et al. [8] (Table 1), in which X, Z, and Y are all binary variables. From
these data, we have generated a corresponding study based on a
selected population. We assumed that 60% of subjects with the risk
factor (Z ¼ 1), and 20% of those without it (Z ¼ 0) were included in
the restricted cohort (S ¼ 1), thus generating a strong positive as-
sociation between the risk factor and selection into the study
(OR ¼ 6.0).

We then changed the scenario, assuming that numbers of the
selected sample were the initial population-based numbers,

whereas the numbers presented by Greenland et al. [8] were those
obtained after the introduction of selection.

Finally, as in Greenland et al. [8], we considered the scenario in
which Z also causes the exposure X and therefore is a confounder
for the X-Y association. This scenario is depicted with a DAG in
Figure 1B. To generate data for this latter example, we followed the
approach used by Greenland et al. [8] and modified the data of
Table 1 to induce an association between X and Z. We examined
both the scenario with negative confounding, by assuming an OR
for the effect of Z on X of 0.5 and the one with positive confounding,
by assuming an OR of 2.

Both in the population-based study and in the corresponding
selected study (stratum S ¼ 1), we calculated the marginal X-Y OR
and the two stratum-specific (with respect to Z) X-Y ORs. When
investigating the setting of Figure 1B (lack of collapsibility with
confounding) to disentangle the confounding bias and the non-
collapsibility effect, we calculated the X-Y effect marginalized over
Z, using the methods described in the literature [11,12].

Results

The top half of Table 1 (population-based study) shows the same
numbers reported by Greenland et al. [8]. The prevalence of each of
the three variables X, Z, and Y is 50% with the joint distributions
clearly summing to 1 over the Z strata. The marginal and the con-
ditional ORs differ due to lack of collapsibility (marginal OR ¼ 2.25,
conditional OR ¼ 2.67). As previously demonstrated, in presence of
noncollapsibility, the marginal effect is closer to the null value than
the conditional effect (see, e.g., rule 1 in Hauck et al. [13]). The
bottom half of Table 1 reports the data that would be obtained after
applying the Z-driven selection. In the selected sample (S ¼ 1), the
prevalence of Z increases to 75%. Noncollapsibility is still present,
but its effect is smaller than in the population-based study, as the
marginal OR (now equal to 2.33) is closer to the corresponding
conditional estimate (OR ¼ 2.67).

If we exchange the population-based sample with the selected
sample (i.e., the bottom half of Table 1 now represents the initial
population-based sample), then the prevalence of Z is 75%, the
stratum specific ORs are equal to 2.67, and the population-based
marginal OR is 2.33. The upper part of the table would now
represent the selected sample (OR of 0.17 for the effect of Z on S), in
which the prevalence of Z would be 50%. The difference between
the conditional estimate (2.67) and the marginal estimate (2.25) is
now larger in the selected sample (S ¼ 1) than in the population-
based study. Indeed, when the disease risk factor is binary, a

Fig. 1. Diagram of a population-based cohort and of the corresponding selected study.
(A) The exposure of interest X affects the outcome Y, which is also caused by the risk
factor Z. The probability of being selected as a member of the restricted cohort (S) is
affected by the risk factor Z. (B) Z is also associated with the exposure X and therefore
acts as a confounder of the X-Y association.

Table 1
Joint distribution of the exposure (X), risk factor (Z), and outcome (Y) variables.
Example of noncollapsibility without confounding of the OR

Study population Z ¼ 1 Z ¼ 0 Marginal

X ¼ 1 X ¼ 0 X ¼ 1 X ¼ 0 X ¼ 1 X ¼ 0

Population-based*

Y ¼ 1 0.2 0.15 0.1 0.05 0.3 0.2
Y ¼ 0 0.05 0.1 0.15 0.2 0.2 0.3
ORy 2.67 2.67 2.25

Selected samplez

Y ¼ 1 0.3 0.225 0.05 0.025 0.35 0.25
Y ¼ 0 0.075 0.15 0.075 0.1 0.15 0.25
ORy 2.67 2.67 2.33

* Data of Table 1 of Greenland et al. [8].
y OR ¼ odds ratios.
z 60% of subjects with Z ¼ 1 and 20% of subjects with Z ¼ 0 have been included in

the selected sample.
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