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a b s t r a c t

Purpose: To demonstrate the implications of choosing analytical methods for quantifying spatiotemporal
trends, we compare the assumptions, implementation, and outcomes of popular methods using county-
level heart disease mortality in the United States between 1973 and 2010.
Methods: We applied four regression-based approaches (joinpoint regression, both aspatial and spatial
generalized linear mixed models, and Bayesian space-time model) and compared resulting inferences for
geographic patterns of local estimates of annual percent change and associated uncertainty.
Results: The average local percent change in heart disease mortality from each method was �4.5%, with
the Bayesian model having the smallest range of values. The associated uncertainty in percent change
differed markedly across the methods, with the Bayesian space-time model producing the narrowest
range of variance (0.0e0.8). The geographic pattern of percent change was consistent across methods
with smaller declines in the South Central United States and larger declines in the Northeast and Mid-
west. However, the geographic patterns of uncertainty differed markedly between methods.
Conclusions: The similarity of results, including geographic patterns, for magnitude of percent change
across these methods validates the underlying spatial pattern of declines in heart disease mortality.
However, marked differences in degree of uncertainty indicate that Bayesian modeling offers substan-
tially more precise estimates.

� 2015 Elsevier Inc. All rights reserved.

Introduction

Analytical and computing advances have greatly increased the
numbers of methods and tools available to quantify spatiotemporal
trends of disease. Although these methods vary in their underlying
assumptions, methodological and computational complexity, data
requirements, and interpretability, a paucity of literature compares
thesemethods to provide practical guidance to epidemiologists and
public health practitioners.

Regression-based approaches commonly used to quantify
spatiotemporal trends in local rates of chronic disease include
joinpoint regression, generalized linear mixedmodels (GLMM), and
Bayesian space-time models. Each approach quantifies temporal

trends by estimating valid, succinct, and interpretable summaries of
changing rates using software and methods that are accessible to
many in public health. Comparing thesemethods’ results within the
context of their respective underlying assumptions provides
important information for appropriate method selection in
spatiotemporal studies of health outcomes.

We illustrate these methods using county-level heart disease
death rates in the United States. Between 1950 and the turn of the
21st century, U.S. heart disease mortality decreased by roughly
60% [1,2]. Although studies have reported differential trends in
heart disease mortality by larger geographic areas and urbanicity
[3e10], few have used rigorous methods currently available for
small-area trend estimation. In this study, we describe the key
features of four regression-based spatiotemporal methods (join-
point regression, aspatial GLMM, spatial GLMM, and Bayesian
space-time models) and compare the resulting estimates of
county-level percent change in heart disease death rates from
1973 to 2010.
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Methods

Data sources

Annual age-specific counts of heart disease deaths in each U.S.
county from 1973 to 2010 for people aged 35 years or more were
obtained from the National Vital Statistics System. Over this
continuous time period, a census, rather than a sample, of deaths in
the United States was recorded. Heart disease deaths were defined
based on underlying cause of death according to the following In-
ternational Classification of Diseases (ICD) codes: ICD-8: 390e398,
402, 404, 410e429; ICD-9: 390e398, 402, 404e429; ICD-10:
I00eI09, I11, I13, I20eI51. Comparability ratios between each ICD
revision are approximately unity, indicating that temporal changes
in ICD codes introduced little to no bias into the study and no ad-
justments were necessary [11,12]. County-level annual estimates of
the population aged 35 years or more, produced by the U.S. Census
Bureau in collaboration with the National Center for Health Sta-
tistics, were compiled [13]. To enhance rate stability, all data were
aggregated into two-year intervals starting in 1973, resulting in 19
biennial intervals. Aggregated to a common set of 3099 counties in
the contiguous United States, rates were age standardized using the
2000 U.S. standard population. The biennial age-standardized rate
was multiplied by the biennial county population aged 35 years or
more to produce a biennial age-standardized death count [14,15].

Estimation of temporal trends

County-level average biennial percent change in heart disease
mortality (hereafter referred to as “percent change”) was estimated
using four model-based methods: joinpoint regression, aspatial
GLMM, spatial GLMM, and Bayesian space-time models. For each,
we estimate percent change in heart disease death rates and its
associated variance, where the variance represents uncertainty or
precision in the estimated percent change. Appendix A contains
additional details.

Joinpoint regression
Joinpoint regression, popularly used in examining temporal

changes in cancer incidence, models rates of disease as piece-wise
log-linear functions of time [16e19]. For each areal unit (e.g.,
county), this method finds inflection points (or joinpoints) repre-
senting the time at which the slope changes. As temporal trendsmay
be represented by a single line or a series of linked segments, the
trend across the entire study period is not required to be log linear.

The slopes of the segments adjacent to the joinpoint quantify
change in the rate over time and define an annual percent change.
Annual percent change of multiple segments can be summarized as
average annual percent change (AAPC), or for our two-year pooled
data, as average biennial percent change [20].

Using joinpoint regression, county-level age-standardized case
counts were independently modeled as log-linear piece-wise
functions of time with Poisson variance, log-population offset, un-
correlated errors, and a maximum of five joinpoints (Equation A.1)
in Joinpoint Regression Program, version 4.0.4 (National Cancer
Institute, Calverton, MD). Model fit and the numbers of joinpoints
were assessed with the modified Bayesian information criterion.

Aspatial and spatial GLMMs
GLMMs quantify global and local temporal trends in disease by

modeling counts and population at risk in a Poisson model or rates
in a linear or log-linear model [21]. These models can be readily fit
using standard statistical software packages (e.g., SAS, Stata). The
assumption of log linearity in this method should be evaluated,
with alternative specifications considered as needed.

For the GLMM analysis, Poisson regression modeled age-
standardized county-level heart disease death rates as log-linear
functions of a global intercept and temporal slope, and county-
level random intercept and slope (Equation A.2) using PROC
GLIMMIX in SAS, version 9.3 (SAS Institute, Cary, NC). Both aspatial
GLMM (assuming spatial independence) and spatial GLMM
(assuming distance-based spatially correlated rates within each
two-year interval) were completed.

Bayesian space-time models
Bayesian space-time models are hierarchical mixed models

where area-level rates are spatially correlated within and across
time. Widely applied in small-area analysis and disease mapping
applications, Bayesian models produce locally interpretable, sta-
tistically stable estimates while minimizing concerns for multiple
testing [14,22e24].

The Bayesian space-time approach modeled age-standardized
rates of heart disease mortality using Poisson regression
(Equation A.5). Given our large number of counties and to ensure
model convergence, spatially independent random effects were not
used [25]. County-specific random intercepts and slopes were
assigned a conditionally autoregressive normal prior which bor-
rows information and statistical strength from adjacent counties
using queen contiguity. Variance hyperpriors were assigned a
uniform distribution between 0 and 1 [26]. Models were imple-
mented in WinBUGS, version 1.4.3 (Imperial College and Medical
Research Council, Cambridge, UK) using R package R2WinBUGS
[27]. Eachmodel was runwith two chains for 30,000 iterationswith
thinning and the first half discarded. Chain convergence was eval-
uated through examination of trace plots of posterior parameter
estimates and the Brooks-Gelman-Rubin statistic [28].

Calculating county-level percent change and its variance
The joinpoint software directly estimates biennial percent

change (as AAPC) and its variance. For GLMM, the percent change
and variance are calculated as a function of parameter estimates.
For the Bayesian model, percent change is calculated as a function
of parameter estimates, and its variance is estimated using the
distribution of the posterior. See Appendix A for details.

Comparison of model results

To compare methods, descriptive statistics for estimated county-
level percent changes and their variances were calculated nationally
and by region. The mean percent change in heart disease death rates
represents the central tendency of percent change across all counties,
and the variance of the mean percent change represents the disper-
sion of percent change across counties. Similarly, themedianvariance
of estimated percent change represents the central tendency of un-
certainty in county-level estimated percent change, and the inter-
quartile range (IQR) of the variance represents the dispersion of
uncertainty in estimated percent change across counties.

To compare county-level geographic patterns, we mapped
estimated percent change and its variance for each method using
ArcMap, version 10.1 (ESRI, Mountain View, CA).

Results

For each two-year interval, age-standardized county-level heart
disease death rates were approximately normally distributed
(Fig.1). The mean, variance, and median death rate consistently
decreased over the study period. Of 3099 counties, joinpoint
regression modeled 2597 (84%) counties with a single declining
segment and an additional 366 (12%) counties with multiple
declining segments.
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