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a b s t r a c t

Measures of causal attribution and preventive potential appear deceptively simple to define, yet have
many subtle variations and are subject to numerous pitfalls in conceptualization, interpretation, and
application. This article reviews basic concepts, measures, and problems to serve as an introduction to
more detailed literature. Allowing for validity and generalization (projection) issues, epidemiologic
attribution measures can serve as useful policy inputs for contrasting expected caseloads or survival
times under different well-defined interventions. Nonetheless, their application in these settings re-
quires attention to effects of the interventions besides those on the study outcome. Their use as estimates
of etiologic attribution requires assumptions beyond the usual validity and statistical assumptions; these
further assumptions will usually have little support or plausibility when the mechanisms of action are
unknown.

� 2015 Elsevier Inc. All rights reserved.

Introduction

Since Levin’s [1] landmark article on what he termed “attribut-
able proportion,” there has been extensive growth of concepts,
definitions, and measures of attribution and prevention, along with
a proliferation of terminology that now includes attributable frac-
tion, attributable risk, attributable risk percent, preventable
fraction, prevented fraction, assigned shares, excess fraction, risk
fraction, rate fraction, and etiologic fraction. The present article
provides an elementary overview of these concepts and certain
misunderstandings and errors that have been common in the
literature. It is intended to provide a basis for approaching more
detailed works explaining these problems and their solutions
[2e14]. The underlying theme is that causal attribution is a far more
complex task than basic formulas and statistical treatments make it
appear even if one can eliminate or control for all well-recognized
bias sources.

To provide a precise framework, the article begins by reviewing
elements of abstract causal models. It then describes basic mea-
sures of attribution for survival time, risk, caseload, and rates, along
with a brief overview of estimation issues. This review is followed

by a discussion of the discrepancy between rate and caseload
attribution and between excess and etiologic (causal) attribution.
For brevity, I focus on comparing two exposure or treatment levels
in one population; there is a large literature on extensions to
situations involving multiple exposure levels and multivariate ex-
posures and their interactions [15e31]. I only briefly mention the
extremely important issue of connecting the resulting attribution
measures to actual interventions [32e39]. I do not address validity
problems particular to attributable-fraction estimation; there are
many discussions [7,40e44]. I also do not address purely statistical
aspects of attributable-fraction estimation, for which the literature is
vast and continues to grow apace.

Some elements of potential-outcome causal models

The framework used here to make concepts precise will be the
potential-outcome (counterfactual) model of causation. For those
already familiar with these models, this section need be only con-
sulted for notation.

Suppose we have a treatment or intervention variable X, which
may have more than two possible levels. If X is a quantity, what
follows will assume that X is scaled and centered so that level
0 denotes a reference treatment level and level 1 denotes a targeted
level for administration. For example, X might represent the
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prescribed dose given of the drug treatment, with 0 representing a
placebo, and 1 representing an active treatment of 40 mg/day; then
1.5 would represent a 60mg/day. Supposewe also have an outcome
variable Y, which may be of any form (e.g., binary, polytomous,
quantitative, multidimensional, or multivariate).

A model for the regression of Y on X is simply a model for the
mean (“expectation”) of Ygiven X, E(Yjx), describing how thatmean
varies as one moves across subgroup with different values x for X.
Such models are used for passive prediction or description of as-
sociation. Causal (or “structural”) models replace Ywith at least two
distinct potential outcomes: Y1 ¼ outcome if X ¼ 1 is administered,
and Y0¼ outcome if X¼ 0 is administered. Because only one level of
X can be administered, at most only one of these potential out-
comes can be observed; others remain unobserved or “missing.” For
example, if X ¼ 1 is the actual treatment, only Y1 is observable;
X¼ 0 is then the counterfactual treatment and Y0 is missing. On the
other hand, if X ¼ 0 is the actual treatment, only Y0 is observable;
X ¼ 1 is then the counterfactual treatment and Y1 is missing.

In the special case inwhich X can take only two levels (e.g., X¼ 1
if a booster vaccination is received, 0 if not), we can summarize the
difference between ordinary regression and causal modeling as
follows: the traditional (descriptive) single-outcome variable used
in ordinary regression analysis is Y ¼ XY1 þ (1�X)Y0. Causal
modeling instead treats the two-dimensional variable Y ¼ (Y1, Y0)
as the outcome, with the treatment variable X indicating which
component of Y we may measure once treatment is given.

In general, X and Y may take any form (binary, polytomous,
quantitative, and multivariate). For example, X may represent a
whole treatment protocol, in which case it would be multivariate,
and any particular value x for X would encode particulars of
treatment (such as dose level and dose timing). To allow for this
extension, we may write Yx for the outcome that would follow
X ¼ x, where now X may vary over multiple dimensions. Second,
the observable outcome variables Yx may be replaced by parame-
ters qx of a distribution of the outcome, leaving the observed
outcome to represent a random draw from the distribution deter-
mined by qx; this extension is called a stochastic potential-outcome
model and is useful for analyzing probability of causation [11].

Basics of attribution

Consider two men labeled patient A1 and A2, who at age
60 years are placed on 40mg/day atorvastatin (treatment, indicated
by X ¼ 1), then die at ages 70 and 74 years. Let T be survival time
past age 60 years, with T playing the role of the outcome variable Y.
Then T1 ¼10 and T1 ¼14 are the survival times given X¼ 1 for these
two patients, with an average value for T1 (survival past 60 years
when untreated) of 12. We might ask several questions about
whether and how treatment was involved in survival; the answers
would shape our measure of attribution.

A basic question is “what would have happened had they simply
not been prescribed the treatment or any substitute?” That is, what
if they had received 0 mg/day of statins (X ¼ 0)? If we were inter-
ested only in survival time, regardless of cause of death, we might
attempt to estimate or impute the unobserved average survival
time at 0 mg/day (the average value of T0) from men taking 0 mg/
daymatched as closely as possible on birth year and baseline factors
affecting survival such as clinical measurements, comorbidities, and
so on at age 60 years. Suppose therewere two suchmatched control
patients, with the one matched to patient A1 dying at 67 years (call
him patient B1) and the other matched to patient A2 dying at 73
years (call him patient B2). Then the estimated average T0 (survival
past 60 years when untreated) for the treated patients A1 and A2 is
(7 þ 13)/2 ¼ 10, which is the average T0 among the untreated
controls.

There are several ways we could compare and combine the 12-
year average survival observed with treatment and the 10-year
average survival without. We could estimate the extra average
survival among the treated attributable to treatment as 12 �
10 ¼ 2 years, or as 12/10 ¼ 1.20-fold increase, or as (12 � 10)/
10 ¼ 0.20 ¼ 20% increased survival attributable to treatment or as
(12 � 10)/12 ¼ 0.17 ¼ 17% of average survival attributable to
treatment. These are estimated average effects among the treated.

We may also attempt to estimate effects in very small groups or
individuals. Under ideal conditions, the death age of patient B1 (67,
which makes T0 ¼ 7 for B1) would equal the death age patient A1
would have had if untreated (making the unobserved T0 for A1
equal 7), in which case we could say that treatment delayed the
death of A1 by 3 years, from age 67 to age 70 years. In parallel,
because B2 died at 73, treatment delayed the death A2 from age 73
to age 74. Thus, we could estimate T1 � T0 as 10� 7¼ 3 years for A1,
and as 14 � 13 ¼ 1 year for A2.

The preceding estimates assume, however, that we are inter-
ested in the effect 40 mg/day had in comparison to 0 mg/day; that
is, they assume that the treated state is the target (study) condition
with the untreated state as the reference (control) condition. We
might instead be interested in the reverse question, namely the
effect of 0 mg/day in comparison to 40 mg/day, in which case the
untreated state is the target, with 40 mg/day as the referent. We
could then estimate the average survival reduction among the
untreated attributable to failure to treat (nontreatment, indicated
by X ¼ 0) as 10 � 12 ¼ �2 years, or two expected years of life lost
(YLL) from failure to treat; or as 10/12 ¼ 0.83-fold decrease in
average survival (relative average survival); or as a (10 � 12)/
12 ¼ �0.17 or 17% reduction in average survival attributable to
failure to treat. Under ideal conditions, we could further estimate
the individual YLL as T0� T1 as 7� 10¼�3 years for B1, and as 13�
14 ¼ �1 year for B2.

Allowing that conditions are usually less than ideal because of
problems such as inexact matching (residual confounding), there is
nothing controversial or particularly subtle about any of the above
measures. Epidemiology textbooks however often have little or no
coverage of effect measures based on survival time. Instead, they
focus on counting the number of deaths under each treatment and
dividing that by one of two types of denominators, which lead to
two different types of attributable fractions.

Most easy to understand correctly are cohort measures which
divide the number of deaths by the number starting follow-up (a
count denominator), showing the proportion of that number dying
by various time points during follow-up. These proportions are
examples of incidence proportions, also known as average risks or
simply risks. In the example, the incidents being counted are
deaths, and the proportion dying (mortality proportion) among the
untreated is 0/2¼ 0 until 7 years, then 1/2¼ 0.5 until 13 years, then
2/2¼ 1 after that; among the treated, the proportion is 0/2¼ 0 until
10 years, then 1/2 ¼ 0.5 until 14 years, then 2/2 ¼ 1 after that. Thus,
the difference in proportions is 0 until 7 years, then 0.5 until
10 years, then 0 again until 13 years, then 0.5 again until 14 years,
and finally 0 again after that (when everyone has died).

The attributable fraction for the proportion, or risk fraction, di-
vides these differences by the proportion dying in the untreated
(when i.e., not zero), expressing the excess proportion from failure
to treat as a proportion of the total incidence (which here is mor-
tality). In the example, the risk fraction is undefined until 7 years,
when it becomes (0.5 � 0)/0.5 ¼ 1 until 10 years, then (0.5 � 0.5)/
0.5¼ 0 until 13 years, then (1 �0.5)/1 ¼0.5 until 14 years, and then
(1 � 1)/1 ¼ 0 thereafter.

More generally, let Rt the proportion (“risk”) of outcome events
occurring over a period in a target cohort (here, the untreated) and
let Rr be the proportion of events that would have occurred over the
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