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Attributable fraction estimation from complex sample survey data
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a b s t r a c t

Purpose: A review of methods for the estimation of attributable fraction (AF) statistics from case-control,
cross-sectional, or cohort data collected under a complex sample design. Provide guidance on practical
methods of complex sample AF estimation and inference using contemporary software tools.
Methods: Statistical literature on AF estimation from complex samples for the period 1980 to 2014 is
reviewed. A general approach based on weighted sum estimators of the AF and application of Jackknife
repeated replication and Bootstrap resampling methods for estimating the variance of AF estimates is
outlined and applied to an example analysis of risk factors for alcohol dependency.
Results: The literature lays the theoretical foundation to address the problem of AF estimation and
inference from complex samples. To date, major statistical software packages do not provide a complete
program but the approach is easily implemented using the modeling software and macro/function
language capabilities available in major statistical analysis packages. In an example application, weighted
sum estimation and inference for the population AF showed stable and consistent results under both
Jackknife repeated replication and Bootstrap methods of variance estimation.
Conclusions: Future work on AF estimation for complex samples should focus on simulation studies and
empirical testing to investigate the properties of the resampling variance estimation methods across a
range of complex study design features and populations.

� 2015 Elsevier Inc. All rights reserved.

Introduction

Contemporary epidemiologic research on the association be-
tween disease or other health outcomes and putative exposure risk
factorsmakes extensive use of observational data from large sample
survey programs such as the National Health and Nutrition Exami-
nation Survey (NHANES). Because most surveys are designed to be
representative of defined target populations, it is natural that they
are used not only to analyze risk but also to estimate the attributable
fraction (AF) of disease or other measurable population outcomes
that can be associated with a given level of exposure to a risk factor.

Survey data collections are used in the full range of epidemio-
logic study designs [1e11]. Cross-sectional sample data from the
Behavioral Risk Factor Surveillance Survey have been used to study
the AF of prevalent cancer diagnoses associated with adverse
childhood experiences [12]. Prospective cohort studies of epide-
miologic risk and AFs often use baseline survey data. TheNHANES III
Mortality Follow-up Study has been used to estimate hazards ratios

and AFs for all-cause mortality among diabetic adults [13]. The AFs
of breast cancer deaths associated with age at first birth and family
history of breast cancer have been estimated from the NHANES I
Epidemiological Follow-up Survey data [14]. Although a less com-
mon use in practice, sample survey designs are also used to conduct
case-control investigations of epidemiologic risk factors [15].

Complex sample designs and design effects

The NHANES, Behavioral Risk Factor Surveillance Survey, and
other epidemiologic survey data collections recruit subjects from
complex probability sample designs that feature stratification of the
target population, multistage cluster sampling, and dispropor-
tionate sample selection (and thus compensatory weighting in
estimation) [16].

The term “complex sample”originates in the specialized featuresof
these sample designs relative to simple random sampling (SRS) [17].

Strata are nonoverlapping groupings of all population elements
or clusters of elements formed by the study designer before the
selection of the probability sample. Sample elements or clusters are
sampled independently within strata, thereby eliminating any
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between-strata component of the sampling error and reducing the
total variance of estimates. In practice, stratification also facilitates
disproportionate allocation of the sample to strata that define
subpopulations of interest (e.g., stratified sampling of exposed and
unexposed persons in a prospective cohort study of disease) [18].

Single stage or multistage cluster sampling is used by survey
designers primarily to reduce interviewing costs by amortizing
travel and related expenditures over a group of observations. In
almost all cases, sampling plans that incorporate cluster sampling
result in standard errors for survey estimates that are greater than
those from an SRS of equal size. The general increase in variances of
sample estimatesdue to clustered sampling is causedbycorrelations
(nonindependence) of observations within sample clusters [19].

Weighting of the survey data in analysis is required to “map” the
sample back to an unbiased representation of the target population.
Generally, thefinal analysisweights in surveydata sets are theproduct
of the sample selection weight (wsel), a survey nonresponse adjust-
ment factor (wnr) and a poststratification adjustment factor (wps):

wfinal ¼ wsel �wnr �wps

The objective in applying weights in survey estimation is to
compensate for varying sample inclusion probabilities and to
attenuate potential bias due to differential nonresponse in the
selected probability sample. The statistical price paid for bias
reduction using wsel and wnr is increased standard errors for
weighted estimates. In contrast, poststratification weighting (wps)
to external population controls can lead to reduced standard errors
of sample estimates or may attenuate sampling biases due to
sample frame noncoverage [20].

In the context of finite population sampling, standard statistical
approaches to estimating relative risk and its variance assume that
the observed data are obtained from a SRS. This closely approxi-
mates the probability model assumption that, conditional on
exposure levels and other covariates, the observations of disease
outcomes are independent, random draws from a probability dis-
tribution (e.g., binomial for the logistic model).

The need to apply complex sample population weights changes
the approach to estimation of population statistics or model pa-
rameters [21]. As noted previously, also relative to SRS designs,
stratification, cluster sampling, andweighting all influence the sizes
of standard errors and the associated confidence intervals (CIs) for
survey estimates. Even for simple statistics such as population
proportions or means, the net influence of these design effects on
the sampling variance of complex sample estimates is difficult to
model analytically. Empirically, experience shows that for
multistage-stratified clustered sample designs such as the NHANES
the true variance for the complex sample estimates is greater than
that for data from an SRS of equal size [16].

Review and recommended approaches

Estimators of AFs take a number of different forms depending on
(1) the epidemiologic study design (cross-sectional, cohort, and
case control); (2) whether estimates of risk ratios are adjusted for
covariates other than the exposure factor; and (3) the source of
prevalence information for exposure/covariate patterns (sample
estimates, population censuses, or registers) for the population of
inference [22e26].

Following Bruzzi et al. [22], the adjusted population AF for ex-
posures at m ¼ 0,., M � 1 levels and c ¼ 1,., C unique covariate
patterns X ¼ {X1,.Xp} can be expressed as follows

AF ¼ 1�
XC
c¼1

XM�1

m¼0

fm;c

.
RRm0jc; (1)

where fm,c is the proportion of the diseased population with
exposure level m and covariate pattern c and RRm0jc is the relative
risk of disease at exposure level m (relative to the baseline, m ¼ 0)
for covariate pattern c.

The adjusted AF statistic is thus a function of both the vector of
population prevalences, f ¼ {fm,c}, and corresponding relative risks,
RR¼ {RRm0jc}. In the general case where f and RRmust be estimated
from sample data, the sampling variance of the estimator of AF is a
complex nonlinear function of the individual estimates’ variances
and covariances. Further complicating estimation and inference for
AF, the prevalences, f, may be estimated from a different source
than the associated risk ratios or drawn from population data
sources [27e29]. This article focuses on covariate-adjusted esti-
mates of population AFs in which both the relative risk and
exposure/covariate prevalence components must be estimated
from a single complex sample data source, although the general
method of estimation and inference we discuss applies equally to
cases where estimates are sourced from multiple surveys and/or
determined from registries or census sources.

In a cross-sectional, cohort, or a case-control study that is based
on a complex probability sample design, estimates of the AF for rare
diseases or outcomes can be computed as a weighted sum function
of estimated relative risks [30,31].
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where: h, a, i indexes sample observation i within stratum
(h¼ 1,.,H) and cluster (a¼ 1,., ah);whai¼ the populationweight
for observation i; yhai ¼ indicator of disease status for observation
i (1¼ yes, 0¼ no); rrhai ¼ the estimated relative risk for observation
i, exp½bb’ðxhai � x0haiÞ�; bb ¼ vector of estimated Poisson (log rate) or
logistic regression coefficients (log odds).

If the disease outcome is not rare, the estimator takes the form of
a ratio of weighted sums of predicted probabilities from a logistic
regression model [30].
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where: pðxhaiÞ ¼ expðbb’xhaiÞ=½1þ expðbb’xhaiÞ� ¼ inverse logit
transform estimate of the probability of disease at exposure levelm;
pðx0haiÞ ¼ expðbb’x0haiÞ=½1þ expðbb’x0haiÞ� ¼ estimated probability of
disease under counterfactual where exposure is set to level 0.

In the series of weighted sum AF estimators, the individual case
weights have two functions. The weights are required to implicitly
and correctly represent the fraction of all disease cases in the
population that have a given joint distribution of exposure level m
and covariate pattern c. The survey weights can also be used to
support pseudomaximum likelihood estimation of the population
parameters of the logistic, Poisson, or proportional hazards model
that is used to derive the relative risk value for each observation
[21,30,32].

Pseudomaximum likelihood estimation estimates of the
regression parameters, B, are obtained bymaximizing the following
unbiased estimate of the population pseudo likelihood which is a
weighted function of the observed sample data and the predicted
probability values, bpðxiÞdillustrated here for a binomial likelihood
and the logistic link [33].

PLðBjy;XÞ ¼
Yn
i¼1
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with: bpðxiÞ ¼ expðxibBÞ=½1þ expðxibBÞ�.
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