
From a compressible fluid model to new mass
conserving cavitation algorithms

Bayada Guy n

Institut Camille Jordan, UMR CNRS 5208, Université de Lyon, Mathématiques—INSA de Lyon, F 69621 Villeurbanne Cedex, France

a r t i c l e i n f o

Article history:
Received 10 June 2013
Received in revised form
22 October 2013
Accepted 24 October 2013
Available online 6 November 2013

Keywords:
Hydrodynamic lubrication
Compressible Reynolds equation
Cavitation algorithm

a b s t r a c t

This study investigates two algorithms proposed to solve a new cavitation model. This new cavitation
model is based on a compressible Reynolds equation in which the density–pressure relation is obtained
from a barotropic–isentropic assumption. It can be viewed as an approximation of the Jakobson–Floberg–
Olsson/Elrod Adams cavitation model. Two algorithms are proposed to solve it. The first one is explicit
and needs an important number of nodes. The second is implicit and can be used for steady-state and
unsteady problems. Its implementation is easy and needs only minor modifications for a computer code
in which cavitation is ignored. It can also be used to compute the solution of the usual J.F.O./E.A. model.
Faster convergence is obtained using a relaxation parameter.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cavitation in lubrication is a complex process which has been
the subject of numerous studies, both from the physical aspect and
the numerical one [1]. The boundary conditions used to describe
the cavitation region are usually a zero pressure gradient and a
constant given value pcav (the so called cavitation pressure). This
constant value is often assumed on the whole cavitation area
while the sign restriction p4pcav is applied on the non cavitated
area. This model has often been called the Reynolds cavitation
model. For a long time, Christopherson algorithm [2] has been
widely used to describe the cavitation. One of its primary attri-
butes is that it is easy to perform: It is a slight modification of the
well-known Jacobi or Gauss Seidel algorithms used to solve the
system of equations obtained by discretizing Reynolds equation
using finite elements or finite difference methods: The only
modification being the introduction of an additional line which
modifies each computed termwhich is less than pcav and puts it to
this value during the iterative procedure. The main disadvantage
of this model is that it is not a mass-conserving one. This feature
can often be neglected in a lot of situations (plain journal bearing
or slider in fully flooded situation) if the load or the attitude angle
are the only operational parameters of interest. However if input
mass flow values have to be considered, if starvation occurs or if
roughness cannot be neglected, the Reynolds cavitation model
must not be used [18]. Most of the works about mass conserving
cavitation models are based on the Jakobsson–Floberg–Ollson

(J.F.O.) [3] cavitation model and the Elrod Adams (E.A.)algorithm
[4]. The basic idea is to describe the mass flow not only as a
function of the pressure p but also of an another unknown θ which
is the relative saturation (or fluid saturation) with the constraints

pZpcav; 0rθr1; ðp�pcavÞðθ�1Þ ¼ 0 ð1Þ

The model is a conservative one by construction. It is however
mathematically much more complicated: hyperbolic in the cavita-
tion area and elliptic in the non cavitated area.

The present proposed paper will address three aspects of the
previously mentioned cavitation J.F.O/E.A. models:

� It is difficult to obtain them in a rigorous way using a thin film
procedure, starting from a full 3 dimensional description. For
example the E.A. model is obtained by a modification of a
mass flow description which is only valid assuming a homo-
geneous 3-dimensional flow [4].

� All these models assume the fact that the pressure never falls
below the cavitation pressure pcav. However sub-ambient
pressure loops have been observed as early as 1982 by Etsion
and Ludwig [5] and Braun and Hendricks [6] one year later.
Values of pressure as small as 0.07 MPA have been observed.
The existence of such under-pressure can be neglected for
heavily loaded devices. For light loaded devices however, the
constraint p4pcav cannot be retained and previous models are
not suitable. Moreover, inside the cavitation area, the variation
of the density with respect to the pressure and the variation of
the viscosity cannot be taken into account.

� Although it is possible to prove that the J.F.O./E.A model is a
well posed problem [7], the computation of the solution is not
easy. Elrod and Adams identify as a difficulty the fact that the
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relation θ–p in Eq. (1) is not one to one (for example the value
θ¼1 is not associated to a unique value of the pressure). They
modify this relation in the non cavitated area by introducing a
small compressibility parameter. Numerous methods have
been proposed to deal with both E.A and J.FO. models. Most
of them are based on the E.A algorithm and its Vijayaraghvan–
Keith improvement [8] by introducing various iterative pro-
cess coupling pressure and saturation [9,10]. Some others used
the characteristic methods to deal with the hyperbolic feature
of the equation [11]. In some particular cases it is possible to
consider a system of coupled ordinary differential equations
instead of the partial differential equation [12]. Recently the
Linear Complementarity numerical method has been used to
solve the discretized problem [13]. These methods are not
easy to implement, so that, despite their physical disturbing
feature, Christopherson method is often used even today.

Recently, a thin film procedure starting from the compressible
3-dimensional Navier–Stokes equation with variable density and
(dynamic) viscosity has been rigorously performed [14]. Assuming
simplified properties (barotropic and isentropic assumptions)of
the fluid, a Reynolds compressible equation is obtained which is
very close to the E.A. model and improved it in some aspects:

� Variation of both density and viscosity in cavitated region and
in “full film” region can be considered

� No constraint like p4pcav is introduced so that under-pressure
can be obtained.

Detailed properties of this new model which will be called
“fully compressible model” (FC) have been already given [15]. We
discuss in this paper numerical algorithms to solve this model. We
will show how a simplified numerical mass conserving algorithm
can be deduced for the JFO–EA model. This algorithm is very close
to the well-known Christopherson algorithm and so is very easy to
implement.

2. New “fully compressible” fluid model

The Reynolds equation is written for a model device with a
small gap h(x1,x2) in which the upper part is fixed and the flat
lower part has a constant velocity u along the x1-main direction.
Neglecting variation of the temperature, viscosity μ and density ρ

are assumed to be only function of the pressure.

∂
∂x1

h3

12μðρÞ ρðpÞ
∂p
∂x1

 !
þ ∂
∂x2

h3

12μðρÞ ρðpÞ
∂p
∂x2

 !
¼ u=2

∂ðρðpÞhÞ
∂x1

þ∂ðρðpÞhÞ
∂t

ð2Þ

Although this equation is written for transient situations, it will
firstly be considered for a steady state situation, so neglecting the
time derivative term. Dynamic aspects will be treated in Section 5.

The cavitation phenomenon is implicitly contained in the
density–pressure relation in the context of the vaporous cavita-
tion. Three distinct regimes are considered: one of pure vapor, one
for pure liquid and one of mixture. The input data are: the
velocities of the sound, cv and cl, the density ρv and ρl and the
viscosities μv and μl in each of the pure regimes. From these data, it
is possible to compute the transition pressure between these
3 regimes: pvm between vapor and mixture and psat between
mixture and liquid [15]

pvm ¼ ρvc
2
v ð3aÞ

psat ¼ ρvc
2
v�N log

ρ2vc
2
v

ρ2l c
2
l

 !
ð3bÞ

with N¼ ρvc2vρlc
2
l ðρv�ρlÞ

ρ2vc2v�ρ2l c
2
l

ð3cÞ

It is convenient to introduce the void fraction α defined by:

α¼ ðρ�ρlÞ=ðρv�ρlÞ

Pressure–density relations are:

pðαÞ ¼ c2vρ if ρoρv ð4aÞ

pðαÞ ¼ Psatþc2l ðρ�ρlÞ if ρ4ρl ð4bÞ

pðαÞ ¼ Psat þN log
ρvc2vρ

ρlðρvc2v ð1�αÞþρlc2l αÞ

 !
if ρvrρrρl

ð4cÞ
In the mixture region, viscosity–density relation can be chosen as
([16,17]):

μðαÞ ¼ αμvþð1�αÞμl Dukler assumption ð5Þ
or

1=μðαÞ ¼MðαÞ=μvþð1�MðαÞÞ=μl McAdams assumption ð6Þ

Nomenclature

cl (cv) m/s sound velocity in the pure liquid region (pure vapor
region)

h gap (m) (hmax, hmin maximal and minimal value of the gap)
p pressure (Pascal),
pvm,(psat) transition pressures between pure vapor-mixture

regime ( mixture-pure liquid regime)
pcav cavitation region in JFO/EA model (Pa)
pinf numerical parameter in the approximation of JFO/EA

model (Pa)
pext boundary condition for the pressure (Pa)
t time (s)

u relative velocity of the upper surface of the device
(m/s) in direction x1

x1,x2 coordinates (x¼x1 for one-dimensional Reynolds
equation)

L length of the device (m)
Lcav length of the cavitation region (test 4)
M number of nodes
W load
X normalized first coordinate: X¼x/L
β Bulk parameter
μl (μv) pascal s-viscosity in the pure liquid region (pure vapor

region)
ρl(ρv) (kg/m3) density of liquid at pressure psat (of vapor at

pressure pvm)
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