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a b s t r a c t

This paper presents an extension of the reduced order finite element model to the case of circular
elastohydrodynamic lubricated (EHL) contacts under isothermal Newtonian considerations. The line
contact model was developed and validated in a previous work (Advances in Engineering Software, 2013;
56:51�62). The model is based on a finite element discretization of the EHL equations: Reynolds, linear
elasticity and load balance with a reduced order model for the linear elasticity part. All equations are
solved simultaneously in a fully-coupled framework using a damped-Newton procedure allowing fast
convergence rates for the global solution. This model combines fast convergence rates, reduced memory
requirements and negligible model reduction errors compared to the full model which makes it an
attractive tool for EHL contact performance prediction.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The development of a fast, accurate and memory efficient
elastohydrodynamic lubrication (EHL) solver has been an ongoing
process in the Tribology community over the last five decades. The
numerical modeling of an EHL contact is a challenging problem with
many difficulties. These are mainly attributed to two features: first, a
strong coupling between several physical problems: hydrodynamics,
linear elasticity, heat dissipation and second, the extremely nonlinear
nature of the problem related to the strong pressure–temperature
dependence of the transport properties of common lubricants. This
has led to the development of several models over the years; each
attempting to overcome these difficulties without compromising
accuracy, robustness and performance.

One of the first attempts to a comprehensive modelling of the
isothermal EHL problem including the elastic deformation of the
solid components along with the pressure dependence of the
transport properties of the lubricant was presented in the pioneer-
ing work of Dowson and Higginson [1] later followed by a more
comprehensive study by Hamrock and Dowson [2]. These works
were based on a finite difference discretization of the EHL
equations that were solved using a semi-system approach. That
is, equations were solved separately and an iterative procedure
was established between their respective solutions, leading to a
slow convergence rate of the overall procedure due to the loss of
information occurring in the weak coupling process. In addition,

the use of finite differences restricted the approach to regular
structured meshing, which led to unnecessarily large matrix
systems. The elastic deformation of the solid components was
computed using an integral approach assuming a half-space
configuration. The latter was associated to a very large computa-
tional overhead as the calculation of the elastic deformation at
every discretization point involved a numerical integration over
the entire computational domain. A major improvement came
with the incorporation of multigrid techniques to these models by
Lubrecht et al. [3]. This allowed a significant improvement in the
convergence rates as well as the large computational times
associated to regular structured grids. Another milestone in the
improvement of these models came later with the application of
multigrid techniques to the integral calculation of the elastic
deformation of the solid components by Venner [4] who also
introduced the line relaxation scheme which allowed an extension
of the range of application of these models to include high loads
with Hertzian pressures reaching up to several Gigapascals.

Another approach that, by virtue of its nature, involves very fast
convergence rates is the full-system approach in which all EHL
equations are solved simultaneously preventing any loss of infor-
mation in the coupling process. One of the first works to use such
an approach is that of Rhode and Oh [5,6] who solved the EHL
problem as one integro-differential equation using a finite element
(FEM) discretization and a nonlinear Newton-like resolution.
However, the integral part of the problem which connects every
point of the discretization domain to all other points leads to a full
Jacobian matrix which inversion requires a large computational
overhead. A similar approach was later provided by Houpert and
Hamrock [7] for the line contact case and extended to the case of
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elliptical contacts by Hsiao et al. [8]. Besides the difficulties
associated to the inversion of a dense Jacobian matrix, all these
models also involved difficulties in the implementation of the
cavitation boundary condition at the exit of the contact because of
the simultaneous solution of all pressure updates. In addition, the
range of application was limited to light and moderately loaded
contacts. More recently, Holmes et al. [9] introduced a new model
using a full-system approach where the elastic part is based on the
differential deflection method introduced earlier by Evans and
Hughes [10]. This method consists in deriving a differential
equation based on the half-space approximation in which the
differential operator has a more localized nature. That is, every
discretization point is only affected by its neighbouring points
leading to a sparse Jacobian matrix. However, for the point contact
case, the system matrix still had a large bandwidth, requiring
a special iterative technique for an efficient resolution of the
coupled equations.

More recently, Habchi et al. [11,12] introduced a finite element
full-system approach for the solution of the EHL problem in which
the elastic part of the problem is based on a classical linear
elasticity approach. This model provided a remedy to the difficul-
ties related to the full-system approach. In fact, the free boundary
arising at the exit of the contact is treated in a straight forward
manner by the use of the penalty method introduced by Wu [13].
The use of the finite element method in which every discretization
point is only connected to neighbouring points belonging to the
same element(s) led to a sparse Jacobian matrix. In addition, the
meshing process was no longer restricted to regular and struc-
tured grids, which led to considerable reduction in the total
number of unknowns and thus the overall size of the global
matrix system. As for highly loaded contacts, the authors intro-
duced special stabilized finite element formulations allowing an
extension of the range of application of the method to include high
loads with Hertzian pressures up to several Gigapascals. With all

these difficulties being overcome, this model profited from the fast
convergence properties of a full-system approach combined with a
Newton-like resolution. The model was validated against existing
ones and its performance was shown to be at least similar to state-
of-the-art models. Nevertheless, a major improvement was still
possible. In fact, the linear elasticity equations employed in
computing the elastic deformation of the solid components are
not restricted to the surface of these solids but rather extend to the
subsurface domains. However, for the solution of the EHL problem,
only the surface deformations of the solids are required. Therefore,
a large number of degrees of freedom (dofs) are computed in vain.
In order to improve this part of the model, Habchi and Issa [14]
introduced a novel EHL-oriented model order reduction technique
for the computation of EHD elastic deformations and applied it to
the solution of isothermal Newtonian line contacts. It consists in
defining the elastic deformation of the solid components as a
linear combination of carefully selected and pre-computed EHL
deformations called “basis functions”. With this new technique,
the elastic deformation of the solid components is obtained using
less than 30 degrees of freedom (dofs). Therefore, not only
memory requirements of this newly developed “reduced model”
were lighter but also an order of magnitude reduction in cpu times
was obtained with respect to the “full model”. In addition, model
reduction errors on central and minimum film thicknesses were
shown to be of the order of only 1‰.

The current paper offers an extension of the “reduced model”
to the case of isothermal Newtonian circular contacts for which
both cpu times and memory requirements are significantly larger
than for line contacts. First, the different EHL equations are
reminded in Section 2. In Section 3, the numerical model devel-
oped in this work is described in details. Section 4 provides an
investigation of the numerical performance of the “reduced
model” for the case of circular contacts. Finally, Section 5 offers a
conclusion to this work.

Nomenclature

A1, A2 Modified WLF model constant parameters
B1, B2 Modified WLF model constant parameters
C1, C2 Modified WLF model constant parameters
Ei Young's modulus of solid body i
Eeq Equivalent Young's modulus
F External load
H Dimensionless film thickness
H0 Dimensionless film thickness constant parameter
L Dimensionless Moes material properties parameter
M Dimensionless Moes load parameter
N2D Number of dof in the 2D hydrodynamic problem
N3D Number of dof in the 3D linear elasticity problem
Ndof Total number of dof of the full model
~Ndof Total number of dof of the reduced model
Nm Number of basis functions employed in the

reduced model
P Dimensionless pressure
Pe Peclet number
R Cylindrical roller radius
SP Pressure solution space
SU Elastic deflection solution space
T0 Ambient temperature
Tg(0) Lubricant's ambient pressure glass transition

temperature
U Elastic displacement vector
X,Y,Z Dimensionless space coordinates

a Hertzian contact radius
p Pressure
ph Hertzian pressure
u,v,w x, y and z components of the elastic

displacement vector
ui Surface velocity of solid body i
um Mean entrainment speed
αn Equivalent pressure-viscosity coefficient
μg Lubricant's viscosity at glass transition temperature
μR Lubricant's reference viscosity
μ Lubricant's dimensionless viscosity
νi Poisson's coefficient of solid body i
νeq Equivalent Poisson's coefficient
φi Basis function i
ρ Lubricant's dimensionless density
ρR Lubricant's reference density

Subscripts

e Elastic
h Hydrodynamic
l Load balance

Dimensionless Parameters

X ¼ x
a Y ¼ y

a Z ¼ z
a P ¼ p

ph
ρ¼ ρ

ρR
μ¼ μ

μR
H¼ hR

a2
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