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A mass-conserving formulation of the Reynolds equation has been recently proposed by some of the
authors to deal with cavitation in lubricated contacts [1]. This formulation, based on the mathematical
derivation of a linear complementarity problem (LCP), overcomes the drawbacks previously associated
with the use of such complementarity formulations for the solution of cavitation problems in which
reformation of the liquid film occurs. In the present paper, the methodology favoured in [1], already
successfully applied to solve textured bearing and squeeze problems in the presence of cavitation in a
one dimensional domain for incompressible fluids, has been extended to include the effects of fluid
compressibility, piezoviscosity and the non-Newtonian fluid behaviour and it has been also applied to
the analysis of two dimensional problems. The evolution of the cavitated region and the contact pressure
distribution are studied for a number of different configurations which can be considered as relevant

Non-Newtonian behaviour
benchmarks.

In particular, some of the results obtained with the proposed scheme are critically analysed and
compared with the predictions obtained using alternative formulations, including full CFD calculations.
The stability of the proposed algorithm and its flexibility in terms of implementation of different models
for compressibility, piezoviscosity and non-Newtonian behaviour are highlighted.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Reynolds equation is commonly used to describe lubrication
problems as an alternative to the more complex full Navier-Stokes
equations. The assumptions the Reynolds equation is based on are
fully satisfied in the analysis of the majority of the lubricated
contact problems commonly found in practical applications. These
assumptions are, namely, that both the ratio of the film thickness
to the contact length and the Reynolds number are small.

Cavitation may occur due to the development of low pressures
within the fluid film. Various formulations have been proposed in
order to correctly simulate this phenomenon. In the cavitated
regions the mechanical properties of the fluid vary significantly.
Jakobsson and Floberg [2] proposed a mass conserving algorithm
capable of analysing lubricant films in the presence of cavitation.
The algorithm described in [2] uses ad-hoc equations to locate the
cavitation boundaries, setting a fixed pressure value in the non-
active regions while solving the Reynolds equation within the
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active counterparts. Elrod and Adams [3] first developed a cavita-
tion algorithm that uses a single equation within the whole
domain and does not require to explicitly locate the cavitation
boundaries. They introduced a switch function, g(p), to suppress
the Poiseuille flow in the non-active regions. In particular, g(p)
equals one where the pressure is greater than the cavitation
pressure, whereas it is null (g(p) =0) otherwise. In this way the
Poiseuille term of the Reynolds equation can be artificially sup-
pressed in the cavitation region. This model has been extensively
employed in the analysis of lubrication problems and it has been
successfully validated by comparison with experimental evidences
for both dynamic transient and EHL problems, e.g. [4,5]. Moreover,
starting from the pioneering works of Elrod [3,6], further
algorithms have been developed that take into account the
compressibility of the lubricant, e.g. Vijayaraghavan and Keith
[7], Venner and Bos [8] and Sahlin et al. [9].

While in the formulation proposed by Elrod a clear separation
between the cavitated and active regions in considered, other
models exist in which the cavitation phenomenon is deduced from
the solution of the constitutive equations of the lubricant, so that a
detailed description of the mixture characteristics in the cavitated
region is required. In such cases, an equivalent homogeneous


www.sciencedirect.com/science/journal/0301679X
www.elsevier.com/locate/triboint
http://dx.doi.org/10.1016/j.triboint.2013.05.018
http://dx.doi.org/10.1016/j.triboint.2013.05.018
http://dx.doi.org/10.1016/j.triboint.2013.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.triboint.2013.05.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.triboint.2013.05.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.triboint.2013.05.018&domain=pdf
mailto:d.dini@imperial.ac.uk
http://dx.doi.org/10.1016/j.triboint.2013.05.018

62 L. Bertocchi et al. / Tribology International 67 (2013) 61-71

compressible fluid is assumed and a smooth pressure-density
relation is used in the entire domain, e.g. [10,11].

Attempts have been made in the past to solve the problem of
determining the active and cavitated film regions using the
concept of complementarity. In particular, the possibility of study-
ing the free boundary problems related to cavitation in terms of
variational inequality as described by Lewy and Stampacchia [12]
was first noticed by Laratta and Marzulli [13] and then subse-
quently investigated by Rohde and McAllister [14] and Cimatti
[15]. An interesting physical interpretation of the assumptions
related to cavitation treated as a complementarity problem is
presented by Strozzi [16]. Furthermore, Kostreva [17] and Oh [18]
and Oh and Goenka [19] extended the problem of cavitation from
hydrodynamic lubrication to elastohydrodynamic lubrication.
They solved the problem of determining the active and cavitated
film regions using the concept of complementarity. However,
these classical methods based on a complementarity formulation
do not ensure the conservation of mass. This undesired character-
istic is due to the fact that such algorithms solve the Reynolds
equation within the whole domain assuming a constant lubricant
density. While this assumption can be reasonably accepted within
the active regions, in the non-active regions the density varies in
both space and time. Giacopini et al. [1] explained how assuming
constant fluid density within the whole domain leads to an
incorrect detection of film reformation. In the literature, additional
mass-conserving methods exist that merge variational inequalities
and JFO theory, [20]. A commonly shared result is that ensuring
the mass continuity is mandatory to correctly predict the film
rupture and reformation, especially where cavitation and reforma-
tion occur several times (e.g. studies of rough contacts [21],
textured surfaces [22-24] and dynamically loaded journal bearings
[25]). The algorithm proposed in [1] ensures the conservation of
mass within the whole domain, employing a complementarity
formulation of the lubrication problem in the presence of cavita-
tion based on a newly defined set of complementarity variables.

Nevertheless, the work presented in [1] considers incompres-
sible and isoviscous fluids, thus providing good results only for low
contact pressures, where the density and viscosity variations in
the active regions are negligible. As a consequence, this model is
not suitable, at least in its original formulation, to study lubrication
problems in many modern practical applications. In fact, the
increasing quest for enhanced performance, the severity of oper-
ating conditions to which modern lubricated contacts can be
subjected, and a constant need for more accurate predictions,
have been responsible for the development of more complex
formulations that take into account several lubricant behaviours
not compatible with the classical Reynolds equation alone.
In particular, at high pressures and in the presence of high sliding
speeds, the compressibility of the fluid, as well as the piezo-
viscosity and the non-Newtonian behaviour can no longer be
neglected. In the past decades, different formulations have been
proposed, which overcome the limitation introduced by the
hypothesis of incompressibility and isoviscosity. Although various
authors in recent years studied the lubricant film behaviour
employing the full Navier-Stokes equations in CFD solvers
[26,27], Reynolds-based approaches maintain great importance
and practical utility due to their simpler formulations, that lead to
usually faster and less cpu-time consuming implementations and
provide equal accuracy for most of the scenarios in which the
change in fluid properties through film-thickness are negligible.

In the present paper, a novel formulation of the Reynolds
equation for compressible, piezoviscous and shear-thinning
fluids in the presence of cavitation is presented in terms of
complementarity. A brief explanation of the complementarity
formulation adopted is first reported together with a description
of the different models employed to introduce compressibility,

piezoviscosity and shear-thinning in the formulation. Then, a
number of numerical examples are provided that focus on the
comparison of the results obtained using the solver developed by
the authors with (i) newly derived analytical solutions, (ii) alter-
native methods available in literature and (iii) CFD simulations. A
detailed description of the implementation of the developed
methodology in the finite element (FE) framework is reported in
Appendix A.

2. Formulation
2.1. Complementarity formulation

In this section, a complementarity formulation of a compres-
sible, piezoviscous and shear-thinning fluid is presented. In the
definition of a complementarity algorithm, two aspects must be
considered: (i) the identification of the complementary variables
and (ii) the definition of the functional connection that relates
them. The complementarity variables adopted here are the same
as those proposed in [1], namely the pressure, p, and the void
fraction, r, which is defined as
r=1-2, (1

Pp
where p is the density of the mixture of oil and gases and p, the
density of the lubricant at the given pressure p.

The Reynolds equation in one dimension for unsteady and
compressible flows is
o [phPap] o 9.
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where h is the film thickness, U the entrainment speed (i.e (Ul
+U2)), and x the fluid viscosity.

Recasting Eq. (2) in terms of p and r one obtains (see [1])
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This equation is valid both in the full film region (active region)
and in the cavitated (non-active) region.

The problem described by Eq. (3) can thus be formulated in
terms of a linear complementarity problem (LCP), the comple-
mentarity variables being p and r

p>0
r>0
p-r=0. 4)

For a compressible fluid, density is a function of pressure and it
can be explicitly expressed by the general formula

Pp=prf (D). 6))

where p. is the density at the cavitation pressure and f(p) is the
functional connection between p, and p.
The complementarity variable r can then be rewritten as

_r (6)

By substitution of Eq. (6) into Eq. (2) and normalising over p,,
one obtains
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