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Sample size plays a crucial role in clinical trials. Flexible sample-size designs, as part of themore general category
of adaptive designs that utilize interim data, have been a popular topic in recent years. In this paper, we give a
comparative review of four related methods for such a design. The likelihood method uses the likelihood ratio
test with an adjusted critical value. The weighted method adjusts the test statistic with given weights rather
than the critical value. The dual test method requires both the likelihood ratio statistic and the weighted statistic
to be greater than the unadjusted critical value. The promising zone approach uses the likelihood ratio statistic
with the unadjusted value and other constraints. All four methods preserve the type-I error rate. In this paper
we explore their properties and compare their relationships and merits. We show that the sample size rules
for the dual test are in conflict with the rules of the promising zone approach. We delineate what is necessary
to specify in the study protocol to ensure the validity of the statistical procedure and what can be kept implicit
in the protocol so that more flexibility can be attained for confirmatory phase III trials in meeting regulatory re-
quirements.We also prove that undermild conditions, the likelihood ratio test still preserves the type-I error rate
when the actual sample size is larger than the re-calculated one.
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1. Introduction

Consider a randomized parallel-arm clinical trial. Assume that the
observations are normally distributedwithmeans μx and μy respectively
for the two arms and a common variance σ2. Assume σ2 is known, and
for simplicity, let σ2 = 1. Denote δ= μx − μy. We are interested in test-
ing the null hypothesis H0: δ = 0 versus the one-sided alternative hy-
pothesis Ha: δ N 0. For a traditional fixed sample size design, one
would calculate the estimated sample size n0 for the protocol. When
the study is completed, the two-sample test statistic uses the data
with the actual sample size, say n⁎. In practice, we should have
n⁎≈ n0, and conditioning on the actual n⁎ is valid as long as the reason
for the minor difference between them has nothing to do with the data
itself. For a conventional group-sequential trial, where early stop for ef-
ficacy is a feature of the design, themaximal information size n0 is given
in the protocol. The information time/fraction for the interim analyses
and the critical values for the interim tests are calculated based on n0, al-
though this designed n0 may not, and often does not, coincide with the
actually realized information n⁎, onwhich thefinal test statistic is based.
For the situationwhen early stop occurs due to convincing interim data,

conditioning on the observed n⁎ b n0 for the final test is taken into ac-
count in the adjusted critical value.

Now, we consider clinical trials with a flexible sample-size design.
For simplicity and practicality, we consider just two stages. In such tri-
als, the outcome information from the first stage influences the sample
size of the second stage, thus also influences the sample size of the
whole study with both stages combined. Put aside for a moment the
issue that the second stage sample size is dependent on the first-stage
data and just from the viewpoint of magnitude, a flexible sample-size
design is obviously different from the fixed sample-size design; in fact,
the designed n0 can be very different from the actual n⁎. It also differs
from the conventional group-sequential design in that the initially
planned n0 is not maximal, and that the final sample size can (and
often does) exceed n0. The problem of how to construct a proper
sample-size flexible design is the subject of this paper. Many authors
have discussed this topic; see, e.g., [1–6] for commentaries and refer-
ences cited therein. We review and comment on the likelihood ratio
test [3,7–9], contrasting it with the weighted test [3,10], the dual test
[3,11–13], and the promising zone approach [12,14].We explore the re-
lationship among these methods by examining in detail the promising
zone construction and discuss theirmerits as usefulmethods for flexible
sample-size trials. All four methods control the type-I error rate and
have included the estimation of treatment effect in the literature that
we will not review here. We agree that, while the rule of the design is
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flexible, the structure of the decision process must be pre-specified for
the protocol to follow so that there is no ambiguity for the regulatory
agencies to examine the validity of the statistical procedure [15–17].
We delineate what is necessary to specify in the study protocol and
what can be kept implicit to attain more flexibility for confirmatory
phase III trials in meeting regulatory requirements. We give numerical
scenarios to illustrate the application of these methods. Discussion of
more regulatory and operational issues can be found in [17–19].

2. General framework for flexible sample-size design

Following the notation in Section 1, a clinical trial is designed
with an initial sample size of n0 patients per group given in the pro-
tocol. At the first/interim stage when data from n1 patients in each

group are available, we calculate the sample means x1 and y1 of the

two groups, and let δ ̂1̂ ¼ x1−y1 and Z1 ¼ δ ̂1
seðδ ̂1Þ

. It is common for a se-

quential design to consider possible early termination of a study for
either futility or efficacy at the interim stage. For given constants h
and k, we plan to (i) reject H0 and terminate the trial if z1 N k, (ii) ac-
cept H0 and terminate the trial if z1 b h, or (iii) continue the trial to
the second (final) stage if h ≤ z1 ≤ k. For the path (iii), the task is to
determine an additional n2 number of patients per group and a crit-
ical value c for the final test so that the overall type I error rate is pre-
served at the prescribed level α. In the literature, different forms of
the final test and associated formula for n2 and c have been
discussed. Throughout the following, we write n2(z1) and n2 inter-
changeably; the former emphasizes the fact that n2 depends on z1
for flexible sample-size designs.

3. The likelihood ratio test

The likelihood ratio test (LRT) for flexible sample-size design was discussed initially in Li et al. [7,8]. It was an improvement over Proschan and
Hunsberger [20] by relaxing the need for their special error functions or a function of combining p-values as in Bauer and Köhne [21]. All that is need-
ed is the conditional power function itself. Müller and Schäfer [22] noted that their conditional rejection probability function corresponds to the con-

ditional probability function of [20] for the 2-stage design case. Hence [22] is consonant with [7,8]. Denote δ ̂2̂ ¼ x2−y2 and Z2 ¼ δ ̂2
seðδ ̂2Þ

based on the

second stage samples. Z2 is defined only if the study continues. At the end of the trial, theWald test statistic is Z ¼ n1ðX1−Y1Þþn2ðX2−Y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn1þn2Þ
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based on n= n1+ n2 patients per group. References [7,8] showed that the one-sided LRT is Z N c for some constant c and derived solutions for n2 and c
via the conditional power approach.

The conditional probability for the final likelihood ratio test to be significant is

CPδ n2; c z1jð Þ ≡ P ZN c z1j ; δð Þ ¼ 1−Φ
c
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The conditional power (1) for given n2 and c is conditioning on two quantities: the assumed treatment effect size δ for Stage 2 data and the
observed Z1 = z1 from Stage 1 data. The treatment effect size can be based on several considerations and is up to the choice of the researcher.
For example, it can be the originally hypothesized value, observed value at Stage 1 or the lower bound of a confidence interval, or some com-
bination of them, perhaps even with other external information or opinion of a clinical meaningful effect that needs to be detected. When a

design aims to provide a conditional power (CP) of 1 − β1 for detecting the current trend δ = δ1̂ at the final stage given the interim result
h ≤ z1 ≤ k, Li et al. [7] derived
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where n2max is themaximum resource-allowable and n2min is theminimum sample sizes for the second stage (usually n2min=n0-n1), and c is solved
in
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by numerical integration, for the given set of design parametersα, β1, h, k, n2max and n2min.Φ(.) is the cumulative distribution function and ϕ(.) is the
density function of the standard normal, and zβ1

= Φ-1(1− β1).

3.1. Comments

3.1.1. Point 1
Futility is usually regarded as an internal business decision for themanufacturers, thus health agencies often view the boundary h non-binding to

the manufacturer. In this case, we replace h by−∞ in Eq. (3a) as an option; that is, set
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